Message Passing-based Inference in Switching Autoregressive Models

Albert Podusenko, B. V. Erp, Dmitry V. Bagaev, Ismail Senöz, B. Vries
{"title":"Message Passing-based Inference in Switching Autoregressive Models","authors":"Albert Podusenko, B. V. Erp, Dmitry V. Bagaev, Ismail Senöz, B. Vries","doi":"10.23919/eusipco55093.2022.9909828","DOIUrl":null,"url":null,"abstract":"The switching autoregressive model is a flexible model for signals generated by non-stationary processes. Unfortunately, evaluation of the exact posterior distributions of the latent variables for a switching autoregressive model is analytically intractable, and this limits the applicability of switching autoregressive models in practical signal processing tasks. In this paper we present a message passing-based approach for computing approximate posterior distributions in the switching autoregressive model. Our solution tracks approximate posterior distributions in a modular way and easily extends to more complicated model variations. The proposed message passing algorithm is verified and validated on synthetic and acoustic data sets respectively.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The switching autoregressive model is a flexible model for signals generated by non-stationary processes. Unfortunately, evaluation of the exact posterior distributions of the latent variables for a switching autoregressive model is analytically intractable, and this limits the applicability of switching autoregressive models in practical signal processing tasks. In this paper we present a message passing-based approach for computing approximate posterior distributions in the switching autoregressive model. Our solution tracks approximate posterior distributions in a modular way and easily extends to more complicated model variations. The proposed message passing algorithm is verified and validated on synthetic and acoustic data sets respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交换自回归模型中基于消息传递的推理
开关自回归模型对于非平稳过程产生的信号是一种灵活的模型。不幸的是,对切换自回归模型的潜在变量的精确后验分布的评估在分析上是难以解决的,这限制了切换自回归模型在实际信号处理任务中的适用性。在本文中,我们提出了一种基于消息传递的方法来计算开关自回归模型中的近似后验分布。我们的解决方案以模块化的方式跟踪近似后验分布,并且很容易扩展到更复杂的模型变化。在合成数据集和声学数据集上分别对所提出的消息传递算法进行了验证和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1