Yosua Sitoto Tandi Allo, Verra Sofica, N. Hasan, Minda Septiani
{"title":"Penggunaan Metode Naïve Bayes Dalam Mengklasifikasi Pengangguran Pada Desa Bojong Kulur","authors":"Yosua Sitoto Tandi Allo, Verra Sofica, N. Hasan, Minda Septiani","doi":"10.31294/bi.v10i1.12333","DOIUrl":null,"url":null,"abstract":"Pengangguran adalah keadaan dimana seorang yang tergolong pada angkatan kerja yang ingin mendapatkan kerja. Hal ini dapat dicermati untuk membantu mengetahui taraf kesejahteraan masyarakat, mengingat tingginya tinkat pengangguran pada Desa Bojong Kulur, banyaknya warga pada Desa Bojong Kulur, dan sendang terjadinya pandemik Covid-19. Oleh karena itu penulis melakukan klasifikasi pengangguran dengan metode Naïve Bayes pada Desa Bojong Kulur. Penulis melakukan klasifikasi dengan metode Naïve Bayes menggunakan aplikasi pendukung Rapidminer untuk pengujian akurasi, presisi, dan recall terhadap data yang tersedia. Pengujian dilakukan dengan menyiapkan data training sebanyak 40 data dan data testing sebanyak 10 data yang dipilih secara acak. Data testing tersebut akan dianalisa menggunakan aplikasi pendukung Rapidminer. Hasil pengujian akurasi, presisi, dan recall klasifikasi pengangguran pada Desa Bojong Kulur dengan metode Naïve Bayes cukup tinggi yaitu sebesar 80%, presisi sebesar 100%, dan recall sebesar 50%. Jadi, dapat disimpulkan bahwa metode klasifikasi Naïve Bayes yang digunakan memberikan proses seleksi yang cepat dan metode yang mudah dipahami dengan tingkat akurasi yang tidak dapat disangkal.Kata Kunci : Pengangguran, Naïve Bayes, Klasifikasi, Data Mining Unemployment is a condition in which a person belonging to the labor force wants to get a job. This can be observed to help determine the level of community welfare, given the high level of unemployment in Bojong Kulur Village, the large number of residents in Bojong Kulur Village, and the ongoing Covid-19 pandemic. Therefore, the authors classify unemployment using the Naïve Bayes method in Bojong Kulur Village. The author performs the classification using the Naïve Bayes method using the Rapidminer support application for testing accuracy, precision, and recall of the available data. The test is carried out by preparing 40 training data and 10 testing data randomly selected. The testing data will be analyzed using the Rapidminer supporting application. The results of testing the accuracy, precision, and recall of unemployment classification in Bojong Kulur Village using the Naïve Bayes method are quite high at 80%, precision at 100%, and recall at 50%. So, it can be concluded that the Naïve Bayes classification method used provides a fast selection process and an easy-to-understand method with an undeniable level of accuracy.Keywords: Unemployment, Nave Bayes, Classification, Data Mining","PeriodicalId":178404,"journal":{"name":"Bianglala Informatika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bianglala Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31294/bi.v10i1.12333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Pengangguran adalah keadaan dimana seorang yang tergolong pada angkatan kerja yang ingin mendapatkan kerja. Hal ini dapat dicermati untuk membantu mengetahui taraf kesejahteraan masyarakat, mengingat tingginya tinkat pengangguran pada Desa Bojong Kulur, banyaknya warga pada Desa Bojong Kulur, dan sendang terjadinya pandemik Covid-19. Oleh karena itu penulis melakukan klasifikasi pengangguran dengan metode Naïve Bayes pada Desa Bojong Kulur. Penulis melakukan klasifikasi dengan metode Naïve Bayes menggunakan aplikasi pendukung Rapidminer untuk pengujian akurasi, presisi, dan recall terhadap data yang tersedia. Pengujian dilakukan dengan menyiapkan data training sebanyak 40 data dan data testing sebanyak 10 data yang dipilih secara acak. Data testing tersebut akan dianalisa menggunakan aplikasi pendukung Rapidminer. Hasil pengujian akurasi, presisi, dan recall klasifikasi pengangguran pada Desa Bojong Kulur dengan metode Naïve Bayes cukup tinggi yaitu sebesar 80%, presisi sebesar 100%, dan recall sebesar 50%. Jadi, dapat disimpulkan bahwa metode klasifikasi Naïve Bayes yang digunakan memberikan proses seleksi yang cepat dan metode yang mudah dipahami dengan tingkat akurasi yang tidak dapat disangkal.Kata Kunci : Pengangguran, Naïve Bayes, Klasifikasi, Data Mining Unemployment is a condition in which a person belonging to the labor force wants to get a job. This can be observed to help determine the level of community welfare, given the high level of unemployment in Bojong Kulur Village, the large number of residents in Bojong Kulur Village, and the ongoing Covid-19 pandemic. Therefore, the authors classify unemployment using the Naïve Bayes method in Bojong Kulur Village. The author performs the classification using the Naïve Bayes method using the Rapidminer support application for testing accuracy, precision, and recall of the available data. The test is carried out by preparing 40 training data and 10 testing data randomly selected. The testing data will be analyzed using the Rapidminer supporting application. The results of testing the accuracy, precision, and recall of unemployment classification in Bojong Kulur Village using the Naïve Bayes method are quite high at 80%, precision at 100%, and recall at 50%. So, it can be concluded that the Naïve Bayes classification method used provides a fast selection process and an easy-to-understand method with an undeniable level of accuracy.Keywords: Unemployment, Nave Bayes, Classification, Data Mining