Synchronous Parallel Processing of Big-Data Analytics Services to Optimize Performance in Federated Clouds

Gueyoung Jung, N. Gnanasambandam, Tridib Mukherjee
{"title":"Synchronous Parallel Processing of Big-Data Analytics Services to Optimize Performance in Federated Clouds","authors":"Gueyoung Jung, N. Gnanasambandam, Tridib Mukherjee","doi":"10.1109/CLOUD.2012.108","DOIUrl":null,"url":null,"abstract":"Parallelization of big-data analytics services over a federation of heterogeneous clouds has been considered to improve performance. However, contrary to common intuition, there is an inherent tradeoff between the level of parallelism and the performance for big-data analytics principally because of a significant delay for big-data to get transferred over the network. The data transfer delay can be comparable or even higher than the time required to compute data. To address the aforementioned tradeoff, this paper determines: (a) how many and which computing nodes in federated clouds should be used for parallel execution of big-data analytics; (b) opportunistic apportioning of big-data to these computing nodes in a way to enable synchronized completion at best-effort performance; and (c) sequence of apportioned, different sizes of big-data chunks to be computed in each node so that transfer of a chunk is overlapped as much as possible with the computation of the previous chunk in the node. In this regard, Maximally Overlapped Bin-packing driven Bursting (MOBB) algorithm is proposed, which improve the performance by up to 60% against existing approaches.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2012.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

Parallelization of big-data analytics services over a federation of heterogeneous clouds has been considered to improve performance. However, contrary to common intuition, there is an inherent tradeoff between the level of parallelism and the performance for big-data analytics principally because of a significant delay for big-data to get transferred over the network. The data transfer delay can be comparable or even higher than the time required to compute data. To address the aforementioned tradeoff, this paper determines: (a) how many and which computing nodes in federated clouds should be used for parallel execution of big-data analytics; (b) opportunistic apportioning of big-data to these computing nodes in a way to enable synchronized completion at best-effort performance; and (c) sequence of apportioned, different sizes of big-data chunks to be computed in each node so that transfer of a chunk is overlapped as much as possible with the computation of the previous chunk in the node. In this regard, Maximally Overlapped Bin-packing driven Bursting (MOBB) algorithm is proposed, which improve the performance by up to 60% against existing approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据分析服务的同步并行处理以优化联邦云中的性能
在异构云联盟上并行化大数据分析服务被认为可以提高性能。然而,与通常的直觉相反,大数据分析的并行性水平和性能之间存在固有的权衡,主要是因为大数据在网络上传输的显著延迟。数据传输延迟可以与计算数据所需的时间相当,甚至更高。为了解决上述权衡问题,本文确定:(a)联邦云中应该使用多少和哪些计算节点来并行执行大数据分析;(b)机会性地将大数据分配给这些计算节点,以实现以最佳性能同步完成;(c)在每个节点上计算分配的不同大小的大数据块的顺序,使一个块的传输与该节点上一个块的计算尽可能重叠。在这方面,提出了最大重叠盒包装驱动爆发(MOBB)算法,与现有方法相比,该算法的性能提高了60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Resource Scaling Based on Application Service Requirements Optimizing JMS Performance for Cloud-Based Application Servers Sharing-Aware Cloud-Based Mobile Outsourcing QoS-Driven Service Selection for Multi-tenant SaaS Maitland: Lighter-Weight VM Introspection to Support Cyber-security in the Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1