Resolution Improvement In FZA Lens-Less Camera By Synthesizing Images Captured With Different Mask-Sensor Distances

Xiao Chen, Tomoya Nakamura, Xiuxi Pan, Kazuyuki Tajima, K. Yamaguchi, T. Shimano, M. Yamaguchi
{"title":"Resolution Improvement In FZA Lens-Less Camera By Synthesizing Images Captured With Different Mask-Sensor Distances","authors":"Xiao Chen, Tomoya Nakamura, Xiuxi Pan, Kazuyuki Tajima, K. Yamaguchi, T. Shimano, M. Yamaguchi","doi":"10.1109/ICIP42928.2021.9506638","DOIUrl":null,"url":null,"abstract":"Fresnel zone aperture (FZA) lens-less camera is a class of computational imaging systems that employs an FZA as a coded mask instead of an optical lens. FZA lens-less camera can perform fast deconvolution reconstruction and realize the re-focusing function. However, the reconstructed image’s spatial resolution is restricted by diffraction when using the conventional method derived from the geometrical optics model. In a previous study, we quantitatively analyzed the diffraction propagation between mask and sensor. Then we proposed a color-channel synthesis reconstruction method based on wave-optics theory. This study proposed a novel image reconstruction method without distorting the color information, comprehensively synthesizing two images captured with different mask-sensor distances to mitigate the diffraction influence and improve the image resolution. The numerical simulation and optical experiment results confirm that the proposed method can improve the spatial resolution to about two times that of the conventional method based on the geometrical optics model.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"31 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fresnel zone aperture (FZA) lens-less camera is a class of computational imaging systems that employs an FZA as a coded mask instead of an optical lens. FZA lens-less camera can perform fast deconvolution reconstruction and realize the re-focusing function. However, the reconstructed image’s spatial resolution is restricted by diffraction when using the conventional method derived from the geometrical optics model. In a previous study, we quantitatively analyzed the diffraction propagation between mask and sensor. Then we proposed a color-channel synthesis reconstruction method based on wave-optics theory. This study proposed a novel image reconstruction method without distorting the color information, comprehensively synthesizing two images captured with different mask-sensor distances to mitigate the diffraction influence and improve the image resolution. The numerical simulation and optical experiment results confirm that the proposed method can improve the spatial resolution to about two times that of the conventional method based on the geometrical optics model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过合成不同掩模-传感器距离捕获的图像来提高FZA无镜头相机的分辨率
无透镜菲涅耳区孔径(FZA)相机是一类使用FZA作为编码掩模而不是光学透镜的计算成像系统。FZA无镜头相机可以进行快速反卷积重建,实现重对焦功能。然而,利用几何光学模型推导出的传统方法,重构图像的空间分辨率受到衍射的限制。在之前的研究中,我们定量分析了掩模与传感器之间的衍射传播。在此基础上,提出了一种基于波光学理论的彩色通道合成重建方法。本研究提出了一种不失真颜色信息的图像重建方法,综合合成两幅不同掩模传感器距离的图像,以减轻衍射影响,提高图像分辨率。数值模拟和光学实验结果表明,该方法可以将空间分辨率提高到基于几何光学模型的传统方法的两倍左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1