Demographics Identification: Variable Extraction Resource (DIVER)

Alexander Hsieh, S. Doan, Michael Conway, Ko-Wei Lin, Hyeon-eui Kim
{"title":"Demographics Identification: Variable Extraction Resource (DIVER)","authors":"Alexander Hsieh, S. Doan, Michael Conway, Ko-Wei Lin, Hyeon-eui Kim","doi":"10.1109/HISB.2012.17","DOIUrl":null,"url":null,"abstract":"Lack of standardization in representing phenotype data generated in different studies is a major barrier to data reuse for cross study analyses. To address this issue, we developed DIVER, a tool that identifies and standardizes demographic variables in dbGaP, based on simple natural language processing and standardized terminology mapping. In its evaluation using variables (N=3,565) from a range of pulmonary studies in dbGaP, DIVER proved to be an effective approach to standardizing dbGaP variables by successfully identifying demographic variables with high rates of recall and precision (98% and 94%, respectively). In addition, DIVER correctly modeled 79% of the identified demographic variables at the core semantic level. Examination of variables that DIVER could not handle shed light on where our tool needs enhancement so it can further improve its semantic modeling accuracy. DIVER is an important component of a system for phenotype discovery in dbGaP studies.","PeriodicalId":375089,"journal":{"name":"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HISB.2012.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Lack of standardization in representing phenotype data generated in different studies is a major barrier to data reuse for cross study analyses. To address this issue, we developed DIVER, a tool that identifies and standardizes demographic variables in dbGaP, based on simple natural language processing and standardized terminology mapping. In its evaluation using variables (N=3,565) from a range of pulmonary studies in dbGaP, DIVER proved to be an effective approach to standardizing dbGaP variables by successfully identifying demographic variables with high rates of recall and precision (98% and 94%, respectively). In addition, DIVER correctly modeled 79% of the identified demographic variables at the core semantic level. Examination of variables that DIVER could not handle shed light on where our tool needs enhancement so it can further improve its semantic modeling accuracy. DIVER is an important component of a system for phenotype discovery in dbGaP studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人口特征识别:变量提取资源(DIVER)
在表示不同研究中产生的表型数据时缺乏标准化是交叉研究分析数据重用的主要障碍。为了解决这个问题,我们开发了DIVER,这是一个基于简单的自然语言处理和标准化术语映射来识别和标准化dbGaP中的人口统计变量的工具。在使用dbGaP一系列肺部研究中的变量(N= 3565)进行评估时,DIVER通过成功识别具有高召回率和准确率(分别为98%和94%)的人口统计学变量,证明了它是标准化dbGaP变量的有效方法。此外,在核心语义层面上,DIVER正确地模拟了79%已识别的人口统计学变量。对DIVER无法处理的变量的检查揭示了我们的工具需要改进的地方,以便进一步提高其语义建模的准确性。DIVER是dbGaP研究中表型发现系统的重要组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Twitter Data Analysis with Simple Semantic Filtering: Example in Tracking Influenza-Like Illnesses Aggregated Indexing of Biomedical Time Series Data Temporal Analysis of Physicians' EHR Workflow during Outpatient Visits Does Domain Knowledge Matter for Assertion Annotation in Clinical Texts? A Randomized Response Model for Privacy-Preserving Data Dissemination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1