{"title":"Simultaneous area and delay minimum K-LUT mapping for K-exact networks","authors":"Shashidhar Thakur, D. F. Wong","doi":"10.1109/ICCD.1995.528840","DOIUrl":null,"url":null,"abstract":"We address the technology mapping problem for lookup table FPGAs. The area minimization problem for mapping K-bounded networks, consisting of nodes with at most K inputs using K-input lookup tables is known to be NP-complete for K/spl ges/5. The complexity was unknown for K=2, 3, and 4. The corresponding delay minimization problem (under the constant delay model) was solved in polynomial time by the flow-map algorithm, for arbitrary values of K. We study the class of K-bounded networks, where all nodes have exactly K inputs. We call such networks K-exact. We give a characterization of mapping solutions for such networks. This leads to a polynomial time algorithm for computing the simultaneous area and delay minimum mapping for such networks using K-input lookup tables. We also show that the flow-map algorithm minimizes the area of the mapped network as well, for K-exact networks. We then show that for K=2 the mapping solution for a 2-bounded network, minimizing the area and delay simultaneously, can be easily obtained from that of a 2-exact network derived from it by eliminating single input nodes. Thus the area minimization problem for 2-input lookup tables can be solved in polynomial time, resolving an open problem.","PeriodicalId":281907,"journal":{"name":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.1995.528840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We address the technology mapping problem for lookup table FPGAs. The area minimization problem for mapping K-bounded networks, consisting of nodes with at most K inputs using K-input lookup tables is known to be NP-complete for K/spl ges/5. The complexity was unknown for K=2, 3, and 4. The corresponding delay minimization problem (under the constant delay model) was solved in polynomial time by the flow-map algorithm, for arbitrary values of K. We study the class of K-bounded networks, where all nodes have exactly K inputs. We call such networks K-exact. We give a characterization of mapping solutions for such networks. This leads to a polynomial time algorithm for computing the simultaneous area and delay minimum mapping for such networks using K-input lookup tables. We also show that the flow-map algorithm minimizes the area of the mapped network as well, for K-exact networks. We then show that for K=2 the mapping solution for a 2-bounded network, minimizing the area and delay simultaneously, can be easily obtained from that of a 2-exact network derived from it by eliminating single input nodes. Thus the area minimization problem for 2-input lookup tables can be solved in polynomial time, resolving an open problem.