SW-LCM: A Scalable and Weakly-supervised Land Cover Mapping Method on a New Sunway Supercomputer

Yi Zhao, Juepeng Zheng, H. Fu, Wenzhao Wu, Jie Gao, Mengxuan Chen, Jinxiao Zhang, Lixian Zhang, Runmin Dong, Z. Du, Sha Liu, Xin Liu, Shaoqing Zhang, Le Yu
{"title":"SW-LCM: A Scalable and Weakly-supervised Land Cover Mapping Method on a New Sunway Supercomputer","authors":"Yi Zhao, Juepeng Zheng, H. Fu, Wenzhao Wu, Jie Gao, Mengxuan Chen, Jinxiao Zhang, Lixian Zhang, Runmin Dong, Z. Du, Sha Liu, Xin Liu, Shaoqing Zhang, Le Yu","doi":"10.1109/IPDPS54959.2023.00071","DOIUrl":null,"url":null,"abstract":"High-resolution land cover mapping (LCM) is an important application for studying and understanding the change of the earth surface. While deep learning (DL) methods demonstrate great potential in analyzing satellite images, they largely depend on massive high-quality labels. This paper proposes SW-LCM, a Scalable and Weakly-supervised two-stage Land Cover Mapping method on a new Sunway Supercomputer. Our method consists of a k-means clustering module as a first stage, and an iterative deep learning module as a second stage. With the k-means module providing a good enough starting point (taking inaccurate results as noisy labels), the deep learning module improves the classification results in an iterative way, without any labelling efforts required for processing large scenarios. To achieve efficiency for country-level land cover mapping, we design a customized data partition scheme and an on-the-fly assembly for k-means. Through careful parallelization and optimization, our k-means module scales to 98,304 computing nodes (over 38 million cores), and provides a sustained performance of 437.56 PFLOPS, in a real LCM task of the entire region of China; the iterative updating part scales to 24,576 nodes, with a performance of 11 PFLOPS. We produce a 10-m resolution land cover map of China, with an accuracy of 83.5% (10-class) or 73.2% (25-class), 7% to 8% higher than best existing products, paving ways for finer land surveys to support sustainability-related applications.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution land cover mapping (LCM) is an important application for studying and understanding the change of the earth surface. While deep learning (DL) methods demonstrate great potential in analyzing satellite images, they largely depend on massive high-quality labels. This paper proposes SW-LCM, a Scalable and Weakly-supervised two-stage Land Cover Mapping method on a new Sunway Supercomputer. Our method consists of a k-means clustering module as a first stage, and an iterative deep learning module as a second stage. With the k-means module providing a good enough starting point (taking inaccurate results as noisy labels), the deep learning module improves the classification results in an iterative way, without any labelling efforts required for processing large scenarios. To achieve efficiency for country-level land cover mapping, we design a customized data partition scheme and an on-the-fly assembly for k-means. Through careful parallelization and optimization, our k-means module scales to 98,304 computing nodes (over 38 million cores), and provides a sustained performance of 437.56 PFLOPS, in a real LCM task of the entire region of China; the iterative updating part scales to 24,576 nodes, with a performance of 11 PFLOPS. We produce a 10-m resolution land cover map of China, with an accuracy of 83.5% (10-class) or 73.2% (25-class), 7% to 8% higher than best existing products, paving ways for finer land surveys to support sustainability-related applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SW-LCM:一种基于新神威超级计算机的可扩展和弱监督土地覆盖制图方法
高分辨率土地覆盖制图(LCM)是研究和认识地球表面变化的重要手段。虽然深度学习(DL)方法在分析卫星图像方面显示出巨大的潜力,但它们在很大程度上依赖于大量高质量的标签。本文提出了一种基于双威超级计算机的可扩展、弱监督两阶段土地覆盖制图方法SW-LCM。我们的方法包括k-means聚类模块作为第一阶段,迭代深度学习模块作为第二阶段。由于k-means模块提供了一个足够好的起点(将不准确的结果作为有噪声的标签),深度学习模块以迭代的方式改进了分类结果,而无需在处理大型场景时进行任何标记工作。为了提高国家级土地覆盖制图的效率,我们设计了一个定制的数据分区方案和k-means的动态组件。通过仔细的并行化和优化,我们的k-means模块扩展到98,304个计算节点(超过3800万内核),并在整个中国地区的实际LCM任务中提供437.56 PFLOPS的持续性能;迭代更新部分扩展到24,576个节点,性能为11 PFLOPS。我们制作了10米分辨率的中国土地覆盖地图,精度为83.5%(10级)或73.2%(25级),比现有最佳产品高出7%至8%,为更精细的土地调查铺平了道路,以支持与可持续发展相关的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-Accelerated Error-Bounded Compression Framework for Quantum Circuit Simulations Generalizable Reinforcement Learning-Based Coarsening Model for Resource Allocation over Large and Diverse Stream Processing Graphs Smart Redbelly Blockchain: Reducing Congestion for Web3 QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows Fast Sparse GPU Kernels for Accelerated Training of Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1