UniBO @ KIPoS: Fine-tuning the Italian "BERTology" for PoS-tagging Spoken Data (short paper)

F. Tamburini
{"title":"UniBO @ KIPoS: Fine-tuning the Italian \"BERTology\" for PoS-tagging Spoken Data (short paper)","authors":"F. Tamburini","doi":"10.4000/BOOKS.AACCADEMIA.7768","DOIUrl":null,"url":null,"abstract":"English. The use of contextualised word embeddings allowed for a relevant performance increase for almost all Natural Language Processing (NLP) applications. Recently some new models especially developed for Italian became available to scholars. This work aims at applying simple fine-tuning methods for producing highperformance solutions at the EVALITA KIPOS PoS-tagging task (Bosco et al., 2020). Italian. L’utilizzazione di word embedding contestuali ha consentito notevoli incrementi nelle performance dei sistemi automatici sviluppati per affrontare vari task nell’ambito dell’elaborazione del linguaggio naturale. Recentemente sono stati introdotti alcuni nuovi modelli sviluppati specificatamente per la lingua italiana. Lo scopo di questo lavoro è valutare se un semplice fine-tuning di questi modelli sia sufficiente per ottenere performance di alto livello nel task KIPOS di EVALITA 2020.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

English. The use of contextualised word embeddings allowed for a relevant performance increase for almost all Natural Language Processing (NLP) applications. Recently some new models especially developed for Italian became available to scholars. This work aims at applying simple fine-tuning methods for producing highperformance solutions at the EVALITA KIPOS PoS-tagging task (Bosco et al., 2020). Italian. L’utilizzazione di word embedding contestuali ha consentito notevoli incrementi nelle performance dei sistemi automatici sviluppati per affrontare vari task nell’ambito dell’elaborazione del linguaggio naturale. Recentemente sono stati introdotti alcuni nuovi modelli sviluppati specificatamente per la lingua italiana. Lo scopo di questo lavoro è valutare se un semplice fine-tuning di questi modelli sia sufficiente per ottenere performance di alto livello nel task KIPOS di EVALITA 2020.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UniBO @ KIPoS:为pos标注语音数据微调意大利语“BERTology”(短文)
English。允许使用内容嵌入的单词来提高几乎所有自然语言处理(NLP)应用程序的相关性能。最近为意大利人开发了一些新的特别设计的新模型。这项工作的目的是简单地调整生产高绩效解决方案的方法,在逃避KIPOS pos标签任务(Bosco et al., 2020)。英语。上下文嵌入式word的使用使为处理自然语言处理领域的几个任务而开发的自动化系统的性能有了显著的提高。最近引进了专门为意大利语开发的新模型。这项工作的目的是评估这些模型的简单微调是否足以在ev预期2020年工作队中获得高水平的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1