Audiovisual, Genre, Neural and Topical Textual Embeddings for TV Programme Content Representation

Saba Nazir, Taner Cagali, M. Sadrzadeh, Chris Newell
{"title":"Audiovisual, Genre, Neural and Topical Textual Embeddings for TV Programme Content Representation","authors":"Saba Nazir, Taner Cagali, M. Sadrzadeh, Chris Newell","doi":"10.1109/ISM.2020.00041","DOIUrl":null,"url":null,"abstract":"TV programmes have their contents described by multiple means: textual subtitles, audiovisual files, and metadata such as genres. In order to represent these contents, we develop vectorial representations for their low-level multimodal features, group them with simple clustering techniques, and combine them using middle and late fusion. For textual features, we use LSI and Doc2Vec neural embeddings; for audio, MFCC's and Bags of Audio Words; for visual, SIFT, and Bags of Visual Words. We apply our model to a dataset of BBC TV programmes and use a standard recommender and pairwise similarity matrices of content vectors to estimate viewers' behaviours. The late fusion of genre, audio and video vectors with both of the textual embeddings significantly increase the precision and diversity of the results.","PeriodicalId":120972,"journal":{"name":"2020 IEEE International Symposium on Multimedia (ISM)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2020.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

TV programmes have their contents described by multiple means: textual subtitles, audiovisual files, and metadata such as genres. In order to represent these contents, we develop vectorial representations for their low-level multimodal features, group them with simple clustering techniques, and combine them using middle and late fusion. For textual features, we use LSI and Doc2Vec neural embeddings; for audio, MFCC's and Bags of Audio Words; for visual, SIFT, and Bags of Visual Words. We apply our model to a dataset of BBC TV programmes and use a standard recommender and pairwise similarity matrices of content vectors to estimate viewers' behaviours. The late fusion of genre, audio and video vectors with both of the textual embeddings significantly increase the precision and diversity of the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电视节目内容表示的视听、体裁、神经和主题文本嵌入
电视节目的内容有多种描述方式:文本字幕、视听文件和元数据(如类型)。为了表示这些内容,我们对它们的低级多模态特征进行了向量表示,用简单的聚类技术对它们进行分组,并使用中后期融合对它们进行组合。对于文本特征,我们使用LSI和Doc2Vec神经嵌入;音频,MFCC和音频单词袋;用于视觉,SIFT和视觉单词袋。我们将我们的模型应用于BBC电视节目的数据集,并使用标准推荐和内容向量的两两相似矩阵来估计观众的行为。流派、音频和视频向量与两种文本嵌入的后期融合显著提高了结果的精度和多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structured Pruning of LSTMs via Eigenanalysis and Geometric Median for Mobile Multimedia and Deep Learning Applications Real-Time Detection of Events in Soccer Videos using 3D Convolutional Neural Networks Audio Captioning Based on Combined Audio and Semantic Embeddings Two types of flows admission control method for maximizing all user satisfaction considering seek-bar operation Better Look Twice - Improving Visual Scene Perception Using a Two-Stage Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1