{"title":"VStore","authors":"Shengwen Liang, Ying Wang, Ziming Yuan, Cheng Liu, Huawei Li, Xiaowei Li","doi":"10.1145/3489517.3530560","DOIUrl":null,"url":null,"abstract":"Graph-based vector search that finds best matches to user queries based on their semantic similarities using a graph data structure, becomes instrumental in data science and AI application. However, deploying graph-based vector search in production systems requires high accuracy and cost-efficiency with low latency and memory footprint, which existing work fails to offer. We present VStore, a graph-based vector search solution that collaboratively optimizes accuracy, latency, memory, and data movement on large-scale vector data based on in-storage computing. The evaluation shows that VStore exhibits significant search efficiency improvement and energy reduction while attaining accuracy over CPU, GPU, and ZipNN platforms.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Graph-based vector search that finds best matches to user queries based on their semantic similarities using a graph data structure, becomes instrumental in data science and AI application. However, deploying graph-based vector search in production systems requires high accuracy and cost-efficiency with low latency and memory footprint, which existing work fails to offer. We present VStore, a graph-based vector search solution that collaboratively optimizes accuracy, latency, memory, and data movement on large-scale vector data based on in-storage computing. The evaluation shows that VStore exhibits significant search efficiency improvement and energy reduction while attaining accuracy over CPU, GPU, and ZipNN platforms.