Toxic comment classifier on social media platform

Savad N. Muhammad, K. H. Hasna
{"title":"Toxic comment classifier on social media platform","authors":"Savad N. Muhammad, K. H. Hasna","doi":"10.26634/jcom.10.4.19307","DOIUrl":null,"url":null,"abstract":"The objective of the paper is to mitigate internet negativity by identifying and blocking toxic comments related to a particular topic or product. The detrimental effects of social media abuse and harassment can cause people to refrain from expressing themselves. Although some platforms disable user comments altogether, this method is not efficient. The presence of toxicity in comments can assist platforms in taking appropriate measures. The paper aims to classify comments according to their toxicity levels for future blockage. The dataset comprises comments classified into six types, toxic, severe toxic, threat, obscene, identity hate, and insult. Multiple classification techniques will be employed to determine the most accurate one for the data. The authors will employ four types of classification and select the most precise one for each dataset. This methodology enables the authors to choose various datasets for the problem and select the most accurate classifier for each dataset.","PeriodicalId":130578,"journal":{"name":"i-manager's Journal on Computer Science","volume":"321 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager's Journal on Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jcom.10.4.19307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of the paper is to mitigate internet negativity by identifying and blocking toxic comments related to a particular topic or product. The detrimental effects of social media abuse and harassment can cause people to refrain from expressing themselves. Although some platforms disable user comments altogether, this method is not efficient. The presence of toxicity in comments can assist platforms in taking appropriate measures. The paper aims to classify comments according to their toxicity levels for future blockage. The dataset comprises comments classified into six types, toxic, severe toxic, threat, obscene, identity hate, and insult. Multiple classification techniques will be employed to determine the most accurate one for the data. The authors will employ four types of classification and select the most precise one for each dataset. This methodology enables the authors to choose various datasets for the problem and select the most accurate classifier for each dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交媒体平台上的有毒评论分类器
本文的目的是通过识别和阻止与特定主题或产品相关的有毒评论来减轻互联网的消极性。社交媒体滥用和骚扰的有害影响可能导致人们不愿表达自己。虽然有些平台完全禁止用户评论,但这种方法效率不高。评论中存在的毒性可以帮助平台采取适当的措施。本文的目的是根据评论的毒性等级对其进行分类,以备将来堵塞。该数据集包括六种类型的评论,分别是有毒的、严重有毒的、威胁的、淫秽的、身份仇恨的和侮辱的。将采用多种分类技术来确定最准确的数据。作者将采用四种类型的分类,并为每个数据集选择最精确的分类。这种方法使作者能够为问题选择不同的数据集,并为每个数据集选择最准确的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TWITTER SENTIMENT ANALYSIS SUPPORT VECTOR MACHINE AND RANDOM FOREST MACHINE LEARNING ALGORITHMS FOR SENTIMENT ANALYSIS ON TOURISM REVIEWS: A PERFORMANCE ANALYSIS NOVEL TECHNIQUE FOR SECURE KEYLESS CAR AUTHENTICATION USING BLOCK-CHAIN FRAMEWORK Internet of things in low-power wide area network and short range network: A review EXTRACTING OF FREQUENT WEB PAGE PATTERNS USING FPPM ALGORITHM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1