Differential evolution for multi-objective optimization with self adaptation

A. Cichon, E. Szlachcic, J. F. Kotowski
{"title":"Differential evolution for multi-objective optimization with self adaptation","authors":"A. Cichon, E. Szlachcic, J. F. Kotowski","doi":"10.1109/INES.2010.5483856","DOIUrl":null,"url":null,"abstract":"In the paper an adapted version of the differential evolution algorithm has been created to solve a multi-objective optimization problem. Multi-objective Differential Evolution Algorithm using vector differences for perturbing the vector population with self adaptation is introduced. Through the combination of mutation strategies and self adaptation of crossover and differentiation constants the proposed MO algorithm performs better than the one with the simple DE scheme in terms of computation speed and quality of the generated multi-objective non-dominated solutions.","PeriodicalId":118326,"journal":{"name":"2010 IEEE 14th International Conference on Intelligent Engineering Systems","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 14th International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2010.5483856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In the paper an adapted version of the differential evolution algorithm has been created to solve a multi-objective optimization problem. Multi-objective Differential Evolution Algorithm using vector differences for perturbing the vector population with self adaptation is introduced. Through the combination of mutation strategies and self adaptation of crossover and differentiation constants the proposed MO algorithm performs better than the one with the simple DE scheme in terms of computation speed and quality of the generated multi-objective non-dominated solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多目标自适应优化的差分进化
本文提出了一种改进的差分进化算法来解决多目标优化问题。介绍了一种利用矢量差分对矢量种群进行自适应扰动的多目标差分进化算法。通过结合突变策略和交叉、微分常数的自适应,本文提出的MO算法在计算速度和生成的多目标非支配解的质量上都优于简单DE方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double-field orientation of unity power factor synchronous motor drive Robust identification of persons by lips contour using shape transformation 3D visualization the results of complicated Grid and Cloud-based applications HUMANN-based systems for differential diagnosis of dementia using neuropsychological tests A solution method for solving I/O and O/D tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1