Glowworm Swarm Optimization Algorithm for Solving Multi-objective Optimization Problem

He Deng-xu, Liu Gui-qing, Zhu Hua-zheng
{"title":"Glowworm Swarm Optimization Algorithm for Solving Multi-objective Optimization Problem","authors":"He Deng-xu, Liu Gui-qing, Zhu Hua-zheng","doi":"10.1109/CIS.2013.10","DOIUrl":null,"url":null,"abstract":"The glowworm swarm optimization algorithm is used to solve multi-objective optimization problem (MOP-GSO). It is shown by simulation that, MOP-GSO algorithm is effective to solve multi-objective optimization. Compared with NSGA2, it is better in term of the spread of the solutions.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The glowworm swarm optimization algorithm is used to solve multi-objective optimization problem (MOP-GSO). It is shown by simulation that, MOP-GSO algorithm is effective to solve multi-objective optimization. Compared with NSGA2, it is better in term of the spread of the solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解多目标优化问题的萤火虫群算法
采用萤火虫群优化算法求解多目标优化问题。仿真结果表明,MOP-GSO算法是解决多目标优化问题的有效方法。与NSGA2相比,溶液的扩散效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Co-op Advertising Analysis within a Supply Chain Based on the Three-Stage Non-cooperate Dynamic Game Model Study on Pseudorandomness of Some Pseudorandom Number Generators with Application The Superiority Analysis of Linear Frequency Modulation and Barker Code Composite Radar Signal The Improvement of the Commonly Used Linear Polynomial Selection Methods A Parallel Genetic Algorithm for Solving the Probabilistic Minimum Spanning Tree Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1