Integrated ANN and Bidirectional Improved PSO for optimization of fertilizer dose on Palawija plants

I. Cholissodin, C. Dewi, E. E. Surbakti
{"title":"Integrated ANN and Bidirectional Improved PSO for optimization of fertilizer dose on Palawija plants","authors":"I. Cholissodin, C. Dewi, E. E. Surbakti","doi":"10.1109/ICSITECH.2016.7852632","DOIUrl":null,"url":null,"abstract":"With the rapid advance of Science and Technology, especially in the field of agriculture. One of the most important aspects that are critical in agriculture is fertilizer. Within the application of fertilizer itself, there are many types of fertilizers and a combination of different doses. Whereas palawija is a plant for crop rotation, that is planted after the rice cultivating season. Palawija is also grown in the highlands where rice cannot grow. Fertilizer application can give different impacts for Palawija. This paper will explain that with an Integrated Artificial Neural Network (ANN) and Bidirectional Improved Particle Swarm Optimization (BIPSO) can optimize the fertilizer dose on Palawija plants. The ANN method can be used to determine the effect on the plants arising from fertilizer application. After this, the user can input two of the effects on crops selected for optimization doses of fertilizer using BIPSO. The ANN method proved to be very good at predicting the value using training data and BIPSO is able to optimize the more than one vector thus fastening the process of the system. The smallest MSE value 8.6023E-03 is obtained from the test using 90% training data and 10% test data, iterating 100 times, with the number of hidden neuron at 10, learning rate of 0.6 and momentum of 0.6. The parameter values of BIPSO use standard parameters on Particle Swarm Optimization (PSO). The proposed method give the recommendation that to get the plant dry weight 4.4964 ton/ha and yield 6.99985 ton/ha is needed Urea 0.191 ton/ha or 191 kg/ha, SP36 0.201 ton/ha or 201 kg/ha, KCL 0.288 ton/ha or 288 kg/ha and Biochar 48.3 ton/ha.","PeriodicalId":447090,"journal":{"name":"2016 2nd International Conference on Science in Information Technology (ICSITech)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Science in Information Technology (ICSITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSITECH.2016.7852632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the rapid advance of Science and Technology, especially in the field of agriculture. One of the most important aspects that are critical in agriculture is fertilizer. Within the application of fertilizer itself, there are many types of fertilizers and a combination of different doses. Whereas palawija is a plant for crop rotation, that is planted after the rice cultivating season. Palawija is also grown in the highlands where rice cannot grow. Fertilizer application can give different impacts for Palawija. This paper will explain that with an Integrated Artificial Neural Network (ANN) and Bidirectional Improved Particle Swarm Optimization (BIPSO) can optimize the fertilizer dose on Palawija plants. The ANN method can be used to determine the effect on the plants arising from fertilizer application. After this, the user can input two of the effects on crops selected for optimization doses of fertilizer using BIPSO. The ANN method proved to be very good at predicting the value using training data and BIPSO is able to optimize the more than one vector thus fastening the process of the system. The smallest MSE value 8.6023E-03 is obtained from the test using 90% training data and 10% test data, iterating 100 times, with the number of hidden neuron at 10, learning rate of 0.6 and momentum of 0.6. The parameter values of BIPSO use standard parameters on Particle Swarm Optimization (PSO). The proposed method give the recommendation that to get the plant dry weight 4.4964 ton/ha and yield 6.99985 ton/ha is needed Urea 0.191 ton/ha or 191 kg/ha, SP36 0.201 ton/ha or 201 kg/ha, KCL 0.288 ton/ha or 288 kg/ha and Biochar 48.3 ton/ha.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合人工神经网络和双向改进粒子群算法优化紫花苜蓿施肥剂量
随着科学技术的飞速发展,特别是在农业领域。在农业中最重要的一个方面是肥料。在施用肥料本身,有许多种类的肥料和不同剂量的组合。而palawija是一种轮作作物,在水稻种植季节之后种植。Palawija也种植在水稻无法生长的高地上。施肥对Palawija有不同的影响。本文介绍了基于人工神经网络(ANN)和双向改进粒子群优化(BIPSO)的帕拉维加(Palawija)施肥优化方法。人工神经网络方法可用于确定施肥对植物的影响。在此之后,用户可以使用BIPSO输入两个对作物的影响,以选择最佳肥料剂量。事实证明,人工神经网络方法在使用训练数据预测值方面非常好,BIPSO能够优化多个向量,从而加快系统的过程。使用90%的训练数据和10%的测试数据进行测试,得到最小的MSE值8.6023E-03,迭代100次,隐藏神经元个数为10,学习率为0.6,动量为0.6。BIPSO的参数值采用粒子群算法(PSO)中的标准参数。建议采用尿素0.191吨/公顷或191公斤/公顷,SP36 0.201吨/公顷或201公斤/公顷,KCL 0.288吨/公顷或288公斤/公顷,生物炭48.3吨/公顷,以获得植株干重4.4964吨/公顷和产量6.99985吨/公顷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Web based fuzzy expert system for lung cancer diagnosis An empirical evaluation of ERP values using RBV approach in Indonesia A survey on data-driven approaches in educational games Enhancing e-learning system to support learning style based personalization Certificate policy and Certification Practice Statement for root CA Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1