{"title":"Romeo: Conversion and Evaluation of HDL Designs in the Encrypted Domain","authors":"Charles Gouert, N. G. Tsoutsos","doi":"10.1109/DAC18072.2020.9218579","DOIUrl":null,"url":null,"abstract":"As cloud computing becomes increasingly ubiquitous, protecting the confidentiality of data outsourced to third parties becomes a priority. While encryption is a natural solution to this problem, traditional algorithms may only protect data at rest and in transit, but do not support encrypted processing. In this work we introduce ROMEO, which enables easy-to-use privacy-preserving processing of data in the cloud using homomorphic encryption. ROMEO automatically converts arbitrary programs expressed in Verilog HDL into equivalent homomorphic circuits that are evaluated using encrypted inputs. For our experiments, we employ cryptographic circuits, such as AES, and benchmarks from the ISCAS’85 and ISCAS’89 suites.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
As cloud computing becomes increasingly ubiquitous, protecting the confidentiality of data outsourced to third parties becomes a priority. While encryption is a natural solution to this problem, traditional algorithms may only protect data at rest and in transit, but do not support encrypted processing. In this work we introduce ROMEO, which enables easy-to-use privacy-preserving processing of data in the cloud using homomorphic encryption. ROMEO automatically converts arbitrary programs expressed in Verilog HDL into equivalent homomorphic circuits that are evaluated using encrypted inputs. For our experiments, we employ cryptographic circuits, such as AES, and benchmarks from the ISCAS’85 and ISCAS’89 suites.