Hand gesture recognition using input-output hidden Markov models

S. Marcel, O. Bernier, J. Viallet, D. Collobert
{"title":"Hand gesture recognition using input-output hidden Markov models","authors":"S. Marcel, O. Bernier, J. Viallet, D. Collobert","doi":"10.1109/AFGR.2000.840674","DOIUrl":null,"url":null,"abstract":"A new hand gesture recognition method based on input-output hidden Markov models is presented. This method deals with the dynamic aspects of gestures. Gestures are extracted from a sequence of video images by tracking the skin-color blobs corresponding to the hand into a body-face space centered on the face of the user. Our goal is to recognize two classes of gestures: deictic and symbolic.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"148","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 148

Abstract

A new hand gesture recognition method based on input-output hidden Markov models is presented. This method deals with the dynamic aspects of gestures. Gestures are extracted from a sequence of video images by tracking the skin-color blobs corresponding to the hand into a body-face space centered on the face of the user. Our goal is to recognize two classes of gestures: deictic and symbolic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用输入输出隐马尔可夫模型的手势识别
提出了一种基于输入输出隐马尔可夫模型的手势识别方法。这种方法处理手势的动态方面。手势是从一系列视频图像中提取出来的,通过跟踪与手相对应的肤色斑点到以用户面部为中心的身体-面部空间。我们的目标是识别两类手势:指示和象征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classifying facial attributes using a 2-D Gabor wavelet representation and discriminant analysis Facial tracking and animation using a 3D sensor Automatic handwriting gestures recognition using hidden Markov models Real-time stereo tracking for head pose and gaze estimation Real-time detection of nodding and head-shaking by directly detecting and tracking the "between-eyes"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1