Laser microprocessing of wide bandgap materials

I. Salama, N. Quick, A. Kar
{"title":"Laser microprocessing of wide bandgap materials","authors":"I. Salama, N. Quick, A. Kar","doi":"10.1117/12.486496","DOIUrl":null,"url":null,"abstract":"Laser direct-write and doping technique (LDWD) is used to introduce variations in electric properties of wide band gap materials such as SiC and diamond. Conductive, p-type doped, n-type doped and insulative tracks are created on different diamond and SiC substrates using this method. The effects of various processing parameters such as laser-matter interaction time, number of repeated exposures, and type of irradiation environment are investigated. SEM, SIMS, XPS and Raman spectroscopy are used to study the effect of laser irradiation on the microstructure, chemical binding and to obtain dopant depth profile in the substrates, respectively. LDWD technique proved to enhance the dopant (nitrogen) diffusivity into SiC resulted in a diffusion coefficient (available in paper)that is four orders of magnitudes faster than the reported value (5 x 10-12 cm2s-1). Process modeling is conducted to study the atomistic of laser-doping process and to utilize laser irradiation to increase both dopant penetration and concentration. Laser doping of nitrogen alters the Raman spectrum of the 4H-SiC suggesting that Raman spectroscopy can be used as a non-contact method to characterize the laser-doped SiC.","PeriodicalId":159280,"journal":{"name":"International Congress on Laser Advanced Materials Processing","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress on Laser Advanced Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.486496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Laser direct-write and doping technique (LDWD) is used to introduce variations in electric properties of wide band gap materials such as SiC and diamond. Conductive, p-type doped, n-type doped and insulative tracks are created on different diamond and SiC substrates using this method. The effects of various processing parameters such as laser-matter interaction time, number of repeated exposures, and type of irradiation environment are investigated. SEM, SIMS, XPS and Raman spectroscopy are used to study the effect of laser irradiation on the microstructure, chemical binding and to obtain dopant depth profile in the substrates, respectively. LDWD technique proved to enhance the dopant (nitrogen) diffusivity into SiC resulted in a diffusion coefficient (available in paper)that is four orders of magnitudes faster than the reported value (5 x 10-12 cm2s-1). Process modeling is conducted to study the atomistic of laser-doping process and to utilize laser irradiation to increase both dopant penetration and concentration. Laser doping of nitrogen alters the Raman spectrum of the 4H-SiC suggesting that Raman spectroscopy can be used as a non-contact method to characterize the laser-doped SiC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宽禁带材料的激光微加工
采用激光直写掺杂技术(LDWD)研究了碳化硅和金刚石等宽禁带材料电性能的变化。利用该方法在不同的金刚石和SiC衬底上创建导电、p型掺杂、n型掺杂和绝缘磁道。研究了激光与物质相互作用时间、重复曝光次数和辐照环境类型等工艺参数对激光与物质相互作用的影响。利用SEM、SIMS、XPS和拉曼光谱分别研究了激光辐照对基体微观结构、化学结合的影响,并获得了掺杂物在基体中的深度分布。LDWD技术被证明可以提高掺杂剂(氮)向SiC的扩散率,导致扩散系数(可在论文中获得)比报道值(5 x 10-12 cm2s-1)快4个数量级。为了研究激光掺杂过程的原子性,利用激光辐照提高掺杂剂的渗透和浓度,进行了过程建模。激光掺杂氮改变了4H-SiC的拉曼光谱,表明拉曼光谱可以作为一种非接触的方法来表征激光掺杂SiC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting fundamentals on multiphase material balance of laser based cutting polymers and natural fiber composites to practical use Effects of different gas environments on CO2 and Nd:YAG laser welding process efficiencies Characteristics of laser induced gas breakdown Designed materials: what and how Present state of applying diode laser in Toyota Motor Corp.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1