Can we beat the prefix filtering?: an adaptive framework for similarity join and search

Jiannan Wang, Guoliang Li, Jianhua Feng
{"title":"Can we beat the prefix filtering?: an adaptive framework for similarity join and search","authors":"Jiannan Wang, Guoliang Li, Jianhua Feng","doi":"10.1145/2213836.2213847","DOIUrl":null,"url":null,"abstract":"As two important operations in data cleaning, similarity join and similarity search have attracted much attention recently. Existing methods to support similarity join usually adopt a prefix-filtering-based framework. They select a prefix of each object and prune object pairs whose prefixes have no overlap. We have an observation that prefix lengths have significant effect on the performance. Different prefix lengths lead to significantly different performance, and prefix filtering does not always achieve high performance. To address this problem, in this paper we propose an adaptive framework to support similarity join. We propose a cost model to judiciously select an appropriate prefix for each object. To efficiently select prefixes, we devise effective indexes. We extend our method to support similarity search. Experimental results show that our framework beats the prefix-filtering-based framework and achieves high efficiency.","PeriodicalId":212616,"journal":{"name":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"225","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213836.2213847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 225

Abstract

As two important operations in data cleaning, similarity join and similarity search have attracted much attention recently. Existing methods to support similarity join usually adopt a prefix-filtering-based framework. They select a prefix of each object and prune object pairs whose prefixes have no overlap. We have an observation that prefix lengths have significant effect on the performance. Different prefix lengths lead to significantly different performance, and prefix filtering does not always achieve high performance. To address this problem, in this paper we propose an adaptive framework to support similarity join. We propose a cost model to judiciously select an appropriate prefix for each object. To efficiently select prefixes, we devise effective indexes. We extend our method to support similarity search. Experimental results show that our framework beats the prefix-filtering-based framework and achieves high efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我们能打败前缀过滤吗?:一个自适应的相似性连接和搜索框架
相似连接和相似搜索作为数据清理中的两种重要操作,近年来受到了广泛的关注。现有的支持相似性连接的方法通常采用基于前缀过滤的框架。它们为每个对象选择一个前缀,并修剪前缀没有重叠的对象对。我们观察到前缀长度对性能有很大的影响。不同的前缀长度会导致显著的性能差异,前缀过滤并不总能达到高性能。为了解决这一问题,本文提出了一种支持相似性连接的自适应框架。我们提出了一个成本模型,以明智地为每个对象选择合适的前缀。为了有效地选择前缀,我们设计了有效的索引。我们扩展了我们的方法来支持相似度搜索。实验结果表明,该框架优于基于前缀过滤的框架,具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CloudRAMSort: fast and efficient large-scale distributed RAM sort on shared-nothing cluster DP-tree: indexing multi-dimensional data under differential privacy (abstract only) Dynamic optimization of generalized SQL queries with horizontal aggregations A model-based approach to attributed graph clustering JustMyFriends: full SQL, full transactional amenities, and access privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1