Generation of membership functions via possibilistic clustering

R. Krishnapuram
{"title":"Generation of membership functions via possibilistic clustering","authors":"R. Krishnapuram","doi":"10.1109/FUZZY.1994.343851","DOIUrl":null,"url":null,"abstract":"Possibilistic clustering has been introduced recently to overcome some of the limitations imposed by the constraint used in the fuzzy c-means algorithm. It was shown that possibilistic memberships correspond more closely to the notion of \"typicality\". In this paper, we explore certain interesting properties of possibilistic clustering, In particular, we show that possibilistic clustering can be successfully used to solve two important problems that arise while using fuzzy set theory: i) determination of membership functions, and ii) determination of the number of clusters.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"71 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

Abstract

Possibilistic clustering has been introduced recently to overcome some of the limitations imposed by the constraint used in the fuzzy c-means algorithm. It was shown that possibilistic memberships correspond more closely to the notion of "typicality". In this paper, we explore certain interesting properties of possibilistic clustering, In particular, we show that possibilistic clustering can be successfully used to solve two important problems that arise while using fuzzy set theory: i) determination of membership functions, and ii) determination of the number of clusters.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过可能性聚类生成隶属函数
最近引入了可能性聚类,以克服模糊c均值算法中使用的约束所带来的一些限制。结果表明,可能性隶属关系更接近于“典型性”的概念。在本文中,我们探讨了可能性聚类的一些有趣的性质,特别是,我们证明了可能性聚类可以成功地用于解决在使用模糊集合理论时出现的两个重要问题:i)隶属函数的确定,ii)聚类数量的确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy inputs Tuning method of linguistic membership functions Possibilistic evidential reasoning systems on systolic arrays Fuzzy linearization for nonlinear systems: a preliminary study A fuzzy logic approach to intelligent alarms in cardioanesthesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1