VLSI design for SC-based speaker recognition

Chien-Yao Wang, Min Shih, Tzu-Chiang Tai, Po-Chuan Lin, Shih-Ting Huang, Jia-Hao Zhao, Jia-Ching Wang
{"title":"VLSI design for SC-based speaker recognition","authors":"Chien-Yao Wang, Min Shih, Tzu-Chiang Tai, Po-Chuan Lin, Shih-Ting Huang, Jia-Hao Zhao, Jia-Ching Wang","doi":"10.1109/ICIEA.2015.7334135","DOIUrl":null,"url":null,"abstract":"This work presents an efficient VLSI architecture design for sparse coding (SC)-based speaker recognition system. The proposed system first extracts the linear predictive cepstral coefficients (LPCCs). Then, we applied orthogonal matching pursuit (OMP) for sparse coding and using the sparse coefficients as feature to do classification task. To speed up the computation time, our proposed chip comprises a LPCC module and an OMP module. The LPCC module computes the linear predictive coefficients (LPCs) and then converts LPCs to LPCCs. The OMP module includes residual unit, atom selection unit, QR decomposition unit, triangular matrix inverse unit and matrix multiplication unit. This designed chip has ability to handle a large dictionary size for sparse coding in OMP modules. The prototype chip is implemented using TSMC 90 nm CMOS technology on a die with a size of approximately 1.9×1.9 mm2.","PeriodicalId":270660,"journal":{"name":"2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2015.7334135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work presents an efficient VLSI architecture design for sparse coding (SC)-based speaker recognition system. The proposed system first extracts the linear predictive cepstral coefficients (LPCCs). Then, we applied orthogonal matching pursuit (OMP) for sparse coding and using the sparse coefficients as feature to do classification task. To speed up the computation time, our proposed chip comprises a LPCC module and an OMP module. The LPCC module computes the linear predictive coefficients (LPCs) and then converts LPCs to LPCCs. The OMP module includes residual unit, atom selection unit, QR decomposition unit, triangular matrix inverse unit and matrix multiplication unit. This designed chip has ability to handle a large dictionary size for sparse coding in OMP modules. The prototype chip is implemented using TSMC 90 nm CMOS technology on a die with a size of approximately 1.9×1.9 mm2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于sc的说话人识别VLSI设计
本文提出了一种高效的基于稀疏编码(SC)的说话人识别系统的VLSI架构设计。该系统首先提取线性预测倒谱系数(LPCCs)。然后,采用正交匹配追踪(OMP)方法进行稀疏编码,并以稀疏系数为特征进行分类。为了加快计算速度,我们提出的芯片包括一个LPCC模块和一个OMP模块。LPCC模块计算线性预测系数,然后将线性预测系数转换为LPCC。OMP模块包括残差单元、原子选择单元、QR分解单元、三角矩阵逆单元和矩阵乘法单元。该芯片具有处理大字典大小的OMP模块稀疏编码的能力。该原型芯片采用台积电90纳米CMOS技术,在尺寸约为1.9×1.9 mm2的芯片上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-accuracy iron-loss measurements on motor stator stacks Design of short channel static induction transistor for low power applications Subspace-based spectrum estimation by reweighted and regularized nuclear norm minimization in frequency-domain A Voronoi neighbor structure-based fingerprint cryptosystem using minutiae descriptors and error-correcting codes Study and experiment of attitude adjustment algorithm for robot drilling end-effector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1