Variational Auto-Encoders Without Graph Coarsening For Fine Mesh Learning

Nicolas Vercheval, H. Bie, A. Pižurica
{"title":"Variational Auto-Encoders Without Graph Coarsening For Fine Mesh Learning","authors":"Nicolas Vercheval, H. Bie, A. Pižurica","doi":"10.1109/ICIP40778.2020.9191189","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Variational Auto-Encoder able to correctly reconstruct a fine mesh from a very low-dimensional latent space. The architecture avoids the usual coarsening of the graph and relies on pooling layers for the decoding phase and on the mean values of the training set for the up-sampling phase. We select new operators compared to previous work, and in particular, we define a new Dirac operator which can be extended to different types of graph structured data. We show the improvements over the previous operators and compare the results with the current benchmark on the Coma Dataset.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a Variational Auto-Encoder able to correctly reconstruct a fine mesh from a very low-dimensional latent space. The architecture avoids the usual coarsening of the graph and relies on pooling layers for the decoding phase and on the mean values of the training set for the up-sampling phase. We select new operators compared to previous work, and in particular, we define a new Dirac operator which can be extended to different types of graph structured data. We show the improvements over the previous operators and compare the results with the current benchmark on the Coma Dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向精细网格学习的无图粗化变分自编码器
在本文中,我们提出了一种变分自编码器,能够从非常低维的潜在空间中正确地重建精细网格。该架构避免了通常的图粗化,在解码阶段依赖于池化层,在上采样阶段依赖于训练集的平均值。与以往的工作相比,我们选择了新的算子,特别是我们定义了一个新的Dirac算子,它可以扩展到不同类型的图结构数据。我们展示了对之前操作的改进,并将结果与Coma数据集上的当前基准进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1