A bootstrap training approach for language model classifiers

V. Warnke, E. Nöth, J. Buckow, S. Harbeck, H. Niemann
{"title":"A bootstrap training approach for language model classifiers","authors":"V. Warnke, E. Nöth, J. Buckow, S. Harbeck, H. Niemann","doi":"10.21437/ICSLP.1998-770","DOIUrl":null,"url":null,"abstract":"In this paper, we present a bootstrap training approach for language model (LM) classifiers. Training class dependent LM and running them in parallel, LM can serve as classifiers with any kind of symbol sequence, e.g., word or phoneme sequences for tasks like topic spotting or language identification (LID). Irrespective of the special symbol sequence used for a LM classifier, the training of a LM is done with a manually labeled training set for each class obtained from not necessarily cooperative speakers. Therefore, we have to face some erroneous labels and deviations from the originally intended class specification. Both facts can worsen classification. It might therefore be better not to use all utterances for training but to automatically select those utterances that improve recognition accuracy; this can be done by a bootstrap procedure. We present the results achieved with our best approach on the VERBMOBIL corpus for the tasks dialog act classification and LID.","PeriodicalId":117113,"journal":{"name":"5th International Conference on Spoken Language Processing (ICSLP 1998)","volume":"483 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Spoken Language Processing (ICSLP 1998)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a bootstrap training approach for language model (LM) classifiers. Training class dependent LM and running them in parallel, LM can serve as classifiers with any kind of symbol sequence, e.g., word or phoneme sequences for tasks like topic spotting or language identification (LID). Irrespective of the special symbol sequence used for a LM classifier, the training of a LM is done with a manually labeled training set for each class obtained from not necessarily cooperative speakers. Therefore, we have to face some erroneous labels and deviations from the originally intended class specification. Both facts can worsen classification. It might therefore be better not to use all utterances for training but to automatically select those utterances that improve recognition accuracy; this can be done by a bootstrap procedure. We present the results achieved with our best approach on the VERBMOBIL corpus for the tasks dialog act classification and LID.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语言模型分类器的自举训练方法
本文提出了一种语言模型(LM)分类器的自举训练方法。训练依赖于类的LM并并行运行它们,LM可以作为任何类型符号序列的分类器,例如,单词或音素序列,用于主题发现或语言识别(LID)等任务。无论LM分类器使用的特殊符号序列如何,LM的训练都是通过人工标记的训练集来完成的,这些训练集来自不一定是合作的说话者。因此,我们不得不面对一些错误的标签和偏离最初预期的类规范。这两个事实都会使分类恶化。因此,最好不要使用所有的话语进行训练,而是自动选择那些提高识别准确性的话语;这可以通过引导过程来完成。我们展示了我们在verb语料库上的最佳方法在对话行为分类和LID任务上取得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assimilation of place in Japanese and dutch Articulatory analysis using a codebook for articulatory based low bit-rate speech coding Phonetic and phonological characteristics of paralinguistic information in spoken Japanese HMM-based visual speech recognition using intensity and location normalization Speech recognition via phonetically featured syllables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1