Testing for Benford's Law: A Monte Carlo Comparison of Methods

D. Joenssen
{"title":"Testing for Benford's Law: A Monte Carlo Comparison of Methods","authors":"D. Joenssen","doi":"10.2139/ssrn.2545243","DOIUrl":null,"url":null,"abstract":"Testing data for conformity to Benford's law is used not only by auditors exploiting a numerical phenomenon to detect fraudulently reported data. Operationally goodness-of-fit tests are used to conclude if data that should, does indeed comply with Benford's law. Naturally, not all statistical tests share the same sensitivity for detecting departures from the null-hypothesis, and thus the test choice is of central importance. This study compares seven tests for Benford's law common in literature. These tests are presented together with the critical values required for statistical hypothesis testing. The procedures are compared in terms of their power, at a significance level of 5%, versus 16 alternative distributions covering a wide range of possible deviations. Even though no test consistently dominated all other tests, results show, amongst other findings, that the current method of choice, the Chi^2-test, is consistently outperformed by Watson's-U^2 statistic.","PeriodicalId":425229,"journal":{"name":"ERN: Hypothesis Testing (Topic)","volume":"607 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Hypothesis Testing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2545243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Testing data for conformity to Benford's law is used not only by auditors exploiting a numerical phenomenon to detect fraudulently reported data. Operationally goodness-of-fit tests are used to conclude if data that should, does indeed comply with Benford's law. Naturally, not all statistical tests share the same sensitivity for detecting departures from the null-hypothesis, and thus the test choice is of central importance. This study compares seven tests for Benford's law common in literature. These tests are presented together with the critical values required for statistical hypothesis testing. The procedures are compared in terms of their power, at a significance level of 5%, versus 16 alternative distributions covering a wide range of possible deviations. Even though no test consistently dominated all other tests, results show, amongst other findings, that the current method of choice, the Chi^2-test, is consistently outperformed by Watson's-U^2 statistic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本福德定律的检验:方法的蒙特卡罗比较
检验数据是否符合本福德定律不仅被审计师利用数字现象来检测欺骗性报告的数据。操作性拟合优度检验用于确定数据是否确实符合本福德定律。当然,并不是所有的统计检验在检测偏离零假设方面都具有相同的灵敏度,因此检验选择是至关重要的。本研究比较了文献中常用的本福德定律的七种检验方法。这些检验与统计假设检验所需的临界值一起提出。在显著性水平为5%的情况下,将这些程序与16种替代分布进行比较,这些分布涵盖了广泛的可能偏差。尽管没有一种检验始终优于所有其他检验,但结果显示,在其他发现中,目前选择的方法Chi^2检验始终优于Watson's-U^2统计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lagrange-Multiplier Test for Large Heterogeneous Panel Data Models "Go Wild for a While!": A New Asymptotically Normal Test for Forecast Evaluation in Nested Models Tests of Conditional Predictive Ability: Existence, Size, and Power Inference for Large-Scale Linear Systems with Known Coefficients The Testing of Efficient Market Hypotheses: A Study of Indian Pharmaceutical Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1