{"title":"Fast Burrows Wheeler Compression Using All-Cores","authors":"A. Deshpande, P J Narayanan","doi":"10.1109/IPDPSW.2015.53","DOIUrl":null,"url":null,"abstract":"In this paper, we present an all-core implementation of Burrows Wheeler Compression algorithm that exploits all computing resources on a system. Our focus is to provide significant benefit to everyday users on common end-to-end applications by exploiting the parallelism of multiple CPU cores and additional accelerators, viz. Many-core GPU, on their machines. The all-core framework is suitable for problems that process large files or buffers in blocks. We consider a system to be made up of compute stations and use a work-queue to dynamically divide the tasks among them. Each compute station uses an implementation that optimally exploits its architecture. We develop a fast GPU BWC algorithm by extending the state-of-the-art GPU string sort to efficiently perform BWT step of BWC. Our hybrid BWC with GPU acceleration achieves a 2.9× speedup over best CPU implementation. Our all-core framework allows concurrent processing of blocks by both GPU and all available CPU cores. We achieve a 3.06× speedup by using all CPU cores and a 4.87× speedup when we additionally use an accelerator i.e. GPU. Our approach will scale to the number and different types of computing resources or accelerators found on a system.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we present an all-core implementation of Burrows Wheeler Compression algorithm that exploits all computing resources on a system. Our focus is to provide significant benefit to everyday users on common end-to-end applications by exploiting the parallelism of multiple CPU cores and additional accelerators, viz. Many-core GPU, on their machines. The all-core framework is suitable for problems that process large files or buffers in blocks. We consider a system to be made up of compute stations and use a work-queue to dynamically divide the tasks among them. Each compute station uses an implementation that optimally exploits its architecture. We develop a fast GPU BWC algorithm by extending the state-of-the-art GPU string sort to efficiently perform BWT step of BWC. Our hybrid BWC with GPU acceleration achieves a 2.9× speedup over best CPU implementation. Our all-core framework allows concurrent processing of blocks by both GPU and all available CPU cores. We achieve a 3.06× speedup by using all CPU cores and a 4.87× speedup when we additionally use an accelerator i.e. GPU. Our approach will scale to the number and different types of computing resources or accelerators found on a system.