Happy and Sad Classification using HOG Feature Descriptor in SVM Model Selection

Derry Alamsyah, M. Fachrurrozi
{"title":"Happy and Sad Classification using HOG Feature Descriptor in SVM Model Selection","authors":"Derry Alamsyah, M. Fachrurrozi","doi":"10.1109/ICIMCIS53775.2021.9699183","DOIUrl":null,"url":null,"abstract":"Facial Expression Recognition (FER) of the image is one of the potential research fields. It remains some open problems to be solved such as various head positions, backgrounds, occlusion, face attribute etc., where the FER 2013 dataset give such conditions. In this research, the small balanced dataset used to recognize two common fundamental expression, happy and sad face image as our set conditions. Using SVM as classifier and HOG as feature expression method, this research shows best performance, that is 72% accuracy, in quadratic polynomial kernel with intercept constant $\\mathrm{b}=1$ and tolerance constant $\\mathrm{C}=0.1$. By using such conditions, minimized pose variant, a conventional approach in FER such SVM and HOG has shown fair performance in the FER 2013 dataset.","PeriodicalId":250460,"journal":{"name":"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMCIS53775.2021.9699183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Facial Expression Recognition (FER) of the image is one of the potential research fields. It remains some open problems to be solved such as various head positions, backgrounds, occlusion, face attribute etc., where the FER 2013 dataset give such conditions. In this research, the small balanced dataset used to recognize two common fundamental expression, happy and sad face image as our set conditions. Using SVM as classifier and HOG as feature expression method, this research shows best performance, that is 72% accuracy, in quadratic polynomial kernel with intercept constant $\mathrm{b}=1$ and tolerance constant $\mathrm{C}=0.1$. By using such conditions, minimized pose variant, a conventional approach in FER such SVM and HOG has shown fair performance in the FER 2013 dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HOG特征描述符在SVM模型选择中的快乐与悲伤分类
图像的面部表情识别是一个很有潜力的研究领域。在fer2013数据集给出的条件下,仍然有一些开放的问题需要解决,比如不同的头部位置、背景、遮挡、人脸属性等。在本研究中,使用小的平衡数据集来识别两种常见的基本表情,快乐和悲伤的脸图像作为我们的设置条件。使用SVM作为分类器,HOG作为特征表达方法,在截距常数$\mathrm{b}=1$,公差常数$\mathrm{C}=0.1$的二次多项式核中,本研究显示出最佳的性能,准确率为72%。在此条件下,最小化姿态变量,传统的SVM和HOG方法在FER 2013数据集中表现出了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Word Expansion using Synonyms in Indonesian Short Essay Auto Scoring Sentiment Analysis of COVID-19 Vaccines from Indonesian Tweets and News Headlines using Various Machine Learning Techniques One Data ASN Framework (ODAF) for Indonesian State Civil Apparatus Sentiment Analysis of Big Cities on The Island of Java in Indonesia from Twitter Data as A Recommender System Effect Of The Learning Rate, Hidden Layer, And Epoch In Lung Cancer Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1