Filtered statistics

P. Terlecki, Hardik Bati, C. Galindo-Legaria, P. Zabback
{"title":"Filtered statistics","authors":"P. Terlecki, Hardik Bati, C. Galindo-Legaria, P. Zabback","doi":"10.1145/1559845.1559943","DOIUrl":null,"url":null,"abstract":"Column statistics are an important element of cardinality estimation frameworks. More accurate estimates allow the optimizer of a RDBMS to generate better plans and improve the overall system's efficiency. This paper introduces filtered statistics, which model value distribution over a set of rows restricted by a predicate. This feature, available in Microsoft SQL Server, can be used to handle column correlation, as well as focus on interesting data ranges. In particular, it fits well for scenarios with logical subtables, like flexible schema or multi-tenant applications. Integration with the existing cardinality estimation infrastructure is presented.","PeriodicalId":344093,"journal":{"name":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","volume":"20 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1559845.1559943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Column statistics are an important element of cardinality estimation frameworks. More accurate estimates allow the optimizer of a RDBMS to generate better plans and improve the overall system's efficiency. This paper introduces filtered statistics, which model value distribution over a set of rows restricted by a predicate. This feature, available in Microsoft SQL Server, can be used to handle column correlation, as well as focus on interesting data ranges. In particular, it fits well for scenarios with logical subtables, like flexible schema or multi-tenant applications. Integration with the existing cardinality estimation infrastructure is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过滤数据
列统计是基数估计框架的一个重要元素。更准确的估计允许RDBMS的优化器生成更好的计划并提高整个系统的效率。本文介绍了过滤统计,它在一组由谓词限制的行上对值的分布进行建模。该特性在Microsoft SQL Server中可用,可用于处理列相关性,以及关注感兴趣的数据范围。特别是,它非常适合具有逻辑子表的场景,比如灵活的模式或多租户应用程序。提出了与现有基数估计基础结构的集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-tier, label-based security enforcement for web applications Estimating the confidence of conditional functional dependencies Session details: Research session 15: nearest neighbor search Session details: Research session 8: column stores Incremental maintenance of length normalized indexes for approximate string matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1