GreenTPU

Pramesh Pandey, Prabal Basu, Koushik Chakraborty, Sanghamitra Roy
{"title":"GreenTPU","authors":"Pramesh Pandey, Prabal Basu, Koushik Chakraborty, Sanghamitra Roy","doi":"10.1145/3316781.3317835","DOIUrl":null,"url":null,"abstract":"The emergence of hardware accelerators has brought about several orders of magnitude improvement in the speed of the deep neural-network (DNN) inference. Among such DNN accelerators, Google Tensor Processing Unit (TPU) has transpired to be the best-in-class, offering more than $15 \\times$ speedup over the contemporary GPUs. However, the rapid growth in several DNN workloads conspires to escalate the energy consumptions of the TPU-based data-centers. In order to restrict the energy consumption of TPUs, we propose GreenTPU--- a low-power near-threshold (NTC) TPU design paradigm. To ensure a high inference accuracy at a low-voltage operation, GreenTPU identifies the patterns in the error-causing activation sequences in the systolic array, and prevents further timing errors from the same sequence by intermittently boosting the operating voltage of the specific multiplier-andaccumulator units in the TPU. Compared to a cutting-edge timing error mitigation technique for TPUs, GreenTPU enables 2X -3X higher performance in an NTC TPU, with a minimal loss in the prediction accuracy.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

The emergence of hardware accelerators has brought about several orders of magnitude improvement in the speed of the deep neural-network (DNN) inference. Among such DNN accelerators, Google Tensor Processing Unit (TPU) has transpired to be the best-in-class, offering more than $15 \times$ speedup over the contemporary GPUs. However, the rapid growth in several DNN workloads conspires to escalate the energy consumptions of the TPU-based data-centers. In order to restrict the energy consumption of TPUs, we propose GreenTPU--- a low-power near-threshold (NTC) TPU design paradigm. To ensure a high inference accuracy at a low-voltage operation, GreenTPU identifies the patterns in the error-causing activation sequences in the systolic array, and prevents further timing errors from the same sequence by intermittently boosting the operating voltage of the specific multiplier-andaccumulator units in the TPU. Compared to a cutting-edge timing error mitigation technique for TPUs, GreenTPU enables 2X -3X higher performance in an NTC TPU, with a minimal loss in the prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LODESTAR DHOOM Filianore ChipSecure MRLoc
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1