Pramesh Pandey, Prabal Basu, Koushik Chakraborty, Sanghamitra Roy
{"title":"GreenTPU","authors":"Pramesh Pandey, Prabal Basu, Koushik Chakraborty, Sanghamitra Roy","doi":"10.1145/3316781.3317835","DOIUrl":null,"url":null,"abstract":"The emergence of hardware accelerators has brought about several orders of magnitude improvement in the speed of the deep neural-network (DNN) inference. Among such DNN accelerators, Google Tensor Processing Unit (TPU) has transpired to be the best-in-class, offering more than $15 \\times$ speedup over the contemporary GPUs. However, the rapid growth in several DNN workloads conspires to escalate the energy consumptions of the TPU-based data-centers. In order to restrict the energy consumption of TPUs, we propose GreenTPU--- a low-power near-threshold (NTC) TPU design paradigm. To ensure a high inference accuracy at a low-voltage operation, GreenTPU identifies the patterns in the error-causing activation sequences in the systolic array, and prevents further timing errors from the same sequence by intermittently boosting the operating voltage of the specific multiplier-andaccumulator units in the TPU. Compared to a cutting-edge timing error mitigation technique for TPUs, GreenTPU enables 2X -3X higher performance in an NTC TPU, with a minimal loss in the prediction accuracy.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
The emergence of hardware accelerators has brought about several orders of magnitude improvement in the speed of the deep neural-network (DNN) inference. Among such DNN accelerators, Google Tensor Processing Unit (TPU) has transpired to be the best-in-class, offering more than $15 \times$ speedup over the contemporary GPUs. However, the rapid growth in several DNN workloads conspires to escalate the energy consumptions of the TPU-based data-centers. In order to restrict the energy consumption of TPUs, we propose GreenTPU--- a low-power near-threshold (NTC) TPU design paradigm. To ensure a high inference accuracy at a low-voltage operation, GreenTPU identifies the patterns in the error-causing activation sequences in the systolic array, and prevents further timing errors from the same sequence by intermittently boosting the operating voltage of the specific multiplier-andaccumulator units in the TPU. Compared to a cutting-edge timing error mitigation technique for TPUs, GreenTPU enables 2X -3X higher performance in an NTC TPU, with a minimal loss in the prediction accuracy.