Minimizing sparse higher order energy functions of discrete variables

C. Rother, Pushmeet Kohli, Wei Feng, Jiaya Jia
{"title":"Minimizing sparse higher order energy functions of discrete variables","authors":"C. Rother, Pushmeet Kohli, Wei Feng, Jiaya Jia","doi":"10.1109/CVPR.2009.5206739","DOIUrl":null,"url":null,"abstract":"Higher order energy functions have the ability to encode high level structural dependencies between pixels, which have been shown to be extremely powerful for image labeling problems. Their use, however, is severely hampered in practice by the intractable complexity of representing and minimizing such functions. We observed that higher order functions encountered in computer vision are very often “sparse”, i.e. many labelings of a higher order clique are equally unlikely and hence have the same high cost. In this paper, we address the problem of minimizing such sparse higher order energy functions. Our method works by transforming the problem into an equivalent quadratic function minimization problem. The resulting quadratic function can be minimized using popular message passing or graph cut based algorithms for MAP inference. Although this is primarily a theoretical paper, it also shows how higher order functions can be used to obtain impressive results for the binary texture restoration problem.","PeriodicalId":386532,"journal":{"name":"2009 IEEE Conference on Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"200","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2009.5206739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 200

Abstract

Higher order energy functions have the ability to encode high level structural dependencies between pixels, which have been shown to be extremely powerful for image labeling problems. Their use, however, is severely hampered in practice by the intractable complexity of representing and minimizing such functions. We observed that higher order functions encountered in computer vision are very often “sparse”, i.e. many labelings of a higher order clique are equally unlikely and hence have the same high cost. In this paper, we address the problem of minimizing such sparse higher order energy functions. Our method works by transforming the problem into an equivalent quadratic function minimization problem. The resulting quadratic function can be minimized using popular message passing or graph cut based algorithms for MAP inference. Although this is primarily a theoretical paper, it also shows how higher order functions can be used to obtain impressive results for the binary texture restoration problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散变量的稀疏高阶能量函数的最小化
高阶能量函数具有编码像素之间高水平结构依赖关系的能力,这已被证明对图像标记问题非常强大。然而,它们的使用在实践中受到表示和最小化这些函数的棘手复杂性的严重阻碍。我们观察到,在计算机视觉中遇到的高阶函数通常是“稀疏的”,即高阶团的许多标记同样不太可能,因此具有相同的高成本。在本文中,我们讨论了最小化这类稀疏高阶能量函数的问题。我们的方法是将问题转化为一个等价的二次函数最小化问题。得到的二次函数可以使用流行的消息传递或基于图切的MAP推理算法最小化。虽然这主要是一篇理论论文,但它也展示了如何使用高阶函数来获得二进制纹理恢复问题的令人印象深刻的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On bias correction for geometric parameter estimation in computer vision Learning multi-modal densities on Discriminative Temporal Interaction Manifold for group activity recognition Nonrigid shape recovery by Gaussian process regression Combining powerful local and global statistics for texture description Observe locally, infer globally: A space-time MRF for detecting abnormal activities with incremental updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1