Study on Short Term Load Forecast based on Cloud Model

A.G. Chaoyun, B.L. Ran
{"title":"Study on Short Term Load Forecast based on Cloud Model","authors":"A.G. Chaoyun, B.L. Ran","doi":"10.1109/PCT.2007.4538589","DOIUrl":null,"url":null,"abstract":"At present, electric load forecasting method and model are all point forecasting to the load, the paper proposes a method of short-term load forecasting using the cloud model which represents the artificial intelligence with uncertainty. The forecasting results are many discrete data sets which are uncertain and change in some range, so they can represent the changing characteristic of electric load more actually. In the paper, the author firstly introduces the conception and characteristic of cloud model and gives the process of data discretization and conception zooming for the load data and the weather factors based on cloud model. Then the paper carries on the mining and inference of uncertainty rules using the associated knowledge algorithm based on cloud model (Cloud-Association- Rules), and finally uses the data of some area as the forecasting analysis example, gives two kinds of results expression which are the forecasting sets distribution chart and the excepted values graphic chart. The forecasting results can meet the practical standard of electric load forecasting.","PeriodicalId":356805,"journal":{"name":"2007 IEEE Lausanne Power Tech","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Lausanne Power Tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCT.2007.4538589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

At present, electric load forecasting method and model are all point forecasting to the load, the paper proposes a method of short-term load forecasting using the cloud model which represents the artificial intelligence with uncertainty. The forecasting results are many discrete data sets which are uncertain and change in some range, so they can represent the changing characteristic of electric load more actually. In the paper, the author firstly introduces the conception and characteristic of cloud model and gives the process of data discretization and conception zooming for the load data and the weather factors based on cloud model. Then the paper carries on the mining and inference of uncertainty rules using the associated knowledge algorithm based on cloud model (Cloud-Association- Rules), and finally uses the data of some area as the forecasting analysis example, gives two kinds of results expression which are the forecasting sets distribution chart and the excepted values graphic chart. The forecasting results can meet the practical standard of electric load forecasting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于云模型的短期负荷预测研究
目前,电力负荷预测方法和模型都是对负荷进行点预测,本文提出了一种利用具有不确定性的人工智能代表的云模型进行短期负荷预测的方法。预测结果是许多不确定且在一定范围内变化的离散数据集,因此更能真实地反映电力负荷的变化特征。本文首先介绍了云模型的概念和特点,给出了基于云模型对负荷数据和天气因素进行数据离散化和概念放大的过程。然后利用基于云模型的关联知识算法(cloud - association - rules)对不确定性规则进行挖掘和推理,最后以某地区的数据为预测分析实例,给出预测集分布图和例外值图两种结果表达。预测结果能够满足电力负荷预测的实际要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Northeast Asia Power Interconnection Routs and Representative Studies in South Korea PSO-based Hybrid Generating System Design Incorporating Reliability Evaluation and Generation/Load Forecasting Actual Problems Of The Distribution Cable Networks In Germany - Ageing And Structural Impact On The Reliability Study on Power Quality Control in Multiple Renewable Energy Hybrid MicroGrid System Configuration of a Large Scale Analog Emulator for Power System Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1