Quality Data for Data Mining and Data Mining for Quality Data: A Constraint Based Approach in XML

M. Shahriar, S. Anam
{"title":"Quality Data for Data Mining and Data Mining for Quality Data: A Constraint Based Approach in XML","authors":"M. Shahriar, S. Anam","doi":"10.1109/FGCNS.2008.74","DOIUrl":null,"url":null,"abstract":"As quality data is important for data mining, reversely data mining is necessary to measure the quality of data. Specifically, in XML, the issue of quality data for mining purposes and also using data mining techniques for quality measures is becoming more necessary as a massive amount of data is being stored and represented over the Web. We propose two important interrelated issues: how quality XML data is useful for data mining in XML and how data mining in XML is used to measure the quality data for XML. When we address both issues, we consider XML constraints because constraints in XML can be used for quality measurement in XML data and also for finding some important patterns and association rules in XML data mining. We note that XML constraints can play an important role for data quality and data mining in XML. We address the theoretical framework rather than solutions. Our research framework is towards the broader task of data mining and data quality for XML data integrations.","PeriodicalId":370780,"journal":{"name":"2008 Second International Conference on Future Generation Communication and Networking Symposia","volume":"229 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Future Generation Communication and Networking Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGCNS.2008.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

As quality data is important for data mining, reversely data mining is necessary to measure the quality of data. Specifically, in XML, the issue of quality data for mining purposes and also using data mining techniques for quality measures is becoming more necessary as a massive amount of data is being stored and represented over the Web. We propose two important interrelated issues: how quality XML data is useful for data mining in XML and how data mining in XML is used to measure the quality data for XML. When we address both issues, we consider XML constraints because constraints in XML can be used for quality measurement in XML data and also for finding some important patterns and association rules in XML data mining. We note that XML constraints can play an important role for data quality and data mining in XML. We address the theoretical framework rather than solutions. Our research framework is towards the broader task of data mining and data quality for XML data integrations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向数据挖掘的高质量数据和面向高质量数据的数据挖掘:XML中基于约束的方法
由于数据质量对数据挖掘非常重要,因此需要反向数据挖掘来度量数据质量。具体来说,在XML中,随着大量数据通过Web存储和表示,为挖掘目的提供高质量数据以及使用数据挖掘技术进行质量度量的问题变得越来越有必要。我们提出了两个重要的相互关联的问题:高质量的XML数据如何对XML中的数据挖掘有用,以及如何使用XML中的数据挖掘来度量XML的高质量数据。在解决这两个问题时,我们考虑XML约束,因为XML中的约束可用于XML数据中的质量度量,也可用于在XML数据挖掘中查找一些重要的模式和关联规则。我们注意到XML约束可以在XML中的数据质量和数据挖掘方面发挥重要作用。我们讨论的是理论框架而不是解决方案。我们的研究框架是针对XML数据集成的数据挖掘和数据质量这一更广泛的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Event Recognition for Visual Surveillance Systems Lossless Information Hiding Scheme Based on Neighboring Correlation HSV Color Space and Face Detection Based Objectionable Image Detecting User Interface Concurrency in Web Service Client Systems Visuo-Motor Coordination in Bipedal Humanoid Robot Walking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1