A note on population size inspired by the extinction of mammoths

D. Ashlock, W. Ashlock
{"title":"A note on population size inspired by the extinction of mammoths","authors":"D. Ashlock, W. Ashlock","doi":"10.1109/CIBCB.2017.8058523","DOIUrl":null,"url":null,"abstract":"This study performs simulations inspired by the reported genome meltdown of a small population of woolly mammoths prior to their extinction. These simulations test the interaction of population size, mutational diameter, and fitness change on two types of fitness landscapes. The first landscape studies a population initialized at a global optimum to assess fitness loss, while the second uses an open-ended function with no global optimum to assess the degree of adaptive radiation possible with different population sizes. Both an age structured non-elitist evolutionary algorithm and a evolution-strategy like biased random walk are used. The simulations demonstrate that small populations are substantially worse at retaining fitness when initialized in a global optimum but also have a substantially greater potential for adaptive radiation and discovery of new niches.","PeriodicalId":283115,"journal":{"name":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2017.8058523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study performs simulations inspired by the reported genome meltdown of a small population of woolly mammoths prior to their extinction. These simulations test the interaction of population size, mutational diameter, and fitness change on two types of fitness landscapes. The first landscape studies a population initialized at a global optimum to assess fitness loss, while the second uses an open-ended function with no global optimum to assess the degree of adaptive radiation possible with different population sizes. Both an age structured non-elitist evolutionary algorithm and a evolution-strategy like biased random walk are used. The simulations demonstrate that small populations are substantially worse at retaining fitness when initialized in a global optimum but also have a substantially greater potential for adaptive radiation and discovery of new niches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由猛犸象灭绝启发的关于种群规模的注释
这项研究的灵感来自于报道的一小群长毛猛犸象在灭绝前的基因组崩溃。这些模拟测试了种群大小、突变直径和适应度变化在两种类型的适应度景观上的相互作用。第一个景观研究在全局最优初始化的种群,以评估适应度损失,而第二个景观使用无全局最优的开放式函数来评估不同种群规模下可能的自适应辐射程度。同时使用了年龄结构的非精英进化算法和偏向随机漫步等进化策略。模拟结果表明,当初始化为全局最优时,小种群在保持适应度方面明显较差,但在适应辐射和发现新生态位方面也有明显较大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Benford's law to detect anomalies in electroencephalogram: An application to detecting alzheimer's disease Microbial abundance analysis and phylogenetic adoption in functional metagenomics Data-driven longitudinal modeling and prediction of symptom dynamics in major depressive disorder: Integrating factor graphs and learning methods Multi-objective evolution of artificial neural networks in multi-class medical diagnosis problems with class imbalance A novel hybrid differential evolution strategy applied to classifier design for mortality prediction in adult critical care admissions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1