Yu-Chuan Chang, Wei-Ming Chen, P. Hsiu, Yen-Yu Lin, Tei-Wei Kuo
{"title":"LSIM","authors":"Yu-Chuan Chang, Wei-Ming Chen, P. Hsiu, Yen-Yu Lin, Tei-Wei Kuo","doi":"10.1145/3316781.3317856","DOIUrl":null,"url":null,"abstract":"Perceptual similarity measurement allows mobile applications to eliminate unnecessary computations without compromising visual experience. Existing pixel-wise measures incur significant overhead with increasing display resolutions and frame rates. This paper presents an ultra lightweight similarity measure called LSIM, which assesses the similarity between frames based on the transformation matrices of graphics objects. To evaluate its efficacy, we integrate LSIM into the Open Graphics Library and conduct experiments on an Android smartphone with various mobile 3D games. The results show that LSIM is highly correlated with the most widely used pixel-wise measure SSIM, yet three to five orders of magnitude faster. We also apply LSIM to a CPU-GPU governor to suppress the rendering of similar frames, thereby further reducing computation energy consumption by up to 27.3% while maintaining satisfactory visual quality. CCS CONCEPTS • Computer systems organization → Embedded software; • Computing methodologies → Graphics processors; Perception;","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"947 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Perceptual similarity measurement allows mobile applications to eliminate unnecessary computations without compromising visual experience. Existing pixel-wise measures incur significant overhead with increasing display resolutions and frame rates. This paper presents an ultra lightweight similarity measure called LSIM, which assesses the similarity between frames based on the transformation matrices of graphics objects. To evaluate its efficacy, we integrate LSIM into the Open Graphics Library and conduct experiments on an Android smartphone with various mobile 3D games. The results show that LSIM is highly correlated with the most widely used pixel-wise measure SSIM, yet three to five orders of magnitude faster. We also apply LSIM to a CPU-GPU governor to suppress the rendering of similar frames, thereby further reducing computation energy consumption by up to 27.3% while maintaining satisfactory visual quality. CCS CONCEPTS • Computer systems organization → Embedded software; • Computing methodologies → Graphics processors; Perception;