Vsameter: Evaluation of a New Open-Source Tool to Measure Vowel Space Area and Related Metrics

Tianyu Cao, L. Moro-Velázquez, Piotr Żelasko, J. Villalba, N. Dehak
{"title":"Vsameter: Evaluation of a New Open-Source Tool to Measure Vowel Space Area and Related Metrics","authors":"Tianyu Cao, L. Moro-Velázquez, Piotr Żelasko, J. Villalba, N. Dehak","doi":"10.1109/SLT54892.2023.10022637","DOIUrl":null,"url":null,"abstract":"Vowel space area (VSA) is an applicable metric for studying speech production deficits and intelligibility. Previous works suggest that the VSA accounts for almost 50% of the intelligibility variance, being an essential component of global intelligibility estimates. However, almost no study publishes a tool to estimate VSA automatically with publicly available codes. In this paper, we propose an open-source tool called VSAmeter to measure VSA and vowel articulation index (VAI) automatically and validate it with the VSA and VAI obtained from a dataset in which the formants and phone segments have been annotated manually. The results show that VSA and VAI values obtained by our proposed method strongly correlate with those generated by manually extracted F1 and F2 and alignments. Such a method can be utilized in speech applications, e.g., the automatic measurement of VAI for the evaluation of speakers with dysarthria.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vowel space area (VSA) is an applicable metric for studying speech production deficits and intelligibility. Previous works suggest that the VSA accounts for almost 50% of the intelligibility variance, being an essential component of global intelligibility estimates. However, almost no study publishes a tool to estimate VSA automatically with publicly available codes. In this paper, we propose an open-source tool called VSAmeter to measure VSA and vowel articulation index (VAI) automatically and validate it with the VSA and VAI obtained from a dataset in which the formants and phone segments have been annotated manually. The results show that VSA and VAI values obtained by our proposed method strongly correlate with those generated by manually extracted F1 and F2 and alignments. Such a method can be utilized in speech applications, e.g., the automatic measurement of VAI for the evaluation of speakers with dysarthria.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vsameter:评估一个新的开源工具来测量元音空间面积和相关指标
元音空间面积(VSA)是研究语音产生缺陷和可理解性的有效指标。先前的研究表明,VSA占可理解性方差的近50%,是全球可理解性估计的重要组成部分。然而,几乎没有研究发布一种工具来使用公开可用的代码自动估计VSA。在本文中,我们提出了一个名为VSAmeter的开源工具,用于自动测量VSA和元音发音指数(VAI),并使用从人工注释的共振子和电话段数据集中获得的VSA和VAI进行验证。结果表明,该方法获得的VSA和VAI值与人工提取F1和F2及对齐生成的值具有较强的相关性。这种方法可用于语音应用,例如,自动测量VAI以评估患有构音障碍的说话者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phone-Level Pronunciation Scoring for L1 Using Weighted-Dynamic Time Warping The Clever Hans Effect in Voice Spoofing Detection A Multi-Modal Array of Interpretable Features to Evaluate Language and Speech Patterns in Different Neurological Disorders Unsupervised Domain Adaptation of Neural PLDA Using Segment Pairs for Speaker Verification Learning Accent Representation with Multi-Level VAE Towards Controllable Speech Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1