Human-perception handwritten character recognition using wavelets

Suzete E. N. Correia, J. Carvalho, R. Sabourin
{"title":"Human-perception handwritten character recognition using wavelets","authors":"Suzete E. N. Correia, J. Carvalho, R. Sabourin","doi":"10.1109/SIBGRA.2002.1167176","DOIUrl":null,"url":null,"abstract":"The human vision system effortlessly recognizes familiar shapes despite changes and distortions found in retinal images. This work proposes a novel approach for recognition of handwritten characters based on human perception. The wavelet transform is used to simulate the multiresolutional capability of vision and to extract features such as fixation points and image details in horizontal, vertical and diagonal directions. A previous system which uses wavelet directional features yielded a recognition rate of 98.25% using the NIST numerals database.","PeriodicalId":286814,"journal":{"name":"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing","volume":"985 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRA.2002.1167176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The human vision system effortlessly recognizes familiar shapes despite changes and distortions found in retinal images. This work proposes a novel approach for recognition of handwritten characters based on human perception. The wavelet transform is used to simulate the multiresolutional capability of vision and to extract features such as fixation points and image details in horizontal, vertical and diagonal directions. A previous system which uses wavelet directional features yielded a recognition rate of 98.25% using the NIST numerals database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波的人类感知手写字符识别
尽管在视网膜图像中发现了变化和扭曲,但人类视觉系统毫不费力地识别出熟悉的形状。本文提出了一种基于人类感知的手写体字符识别新方法。利用小波变换模拟视觉的多分辨率能力,提取水平、垂直和对角方向上的注视点和图像细节等特征。先前使用小波方向特征的系统使用NIST数字数据库获得了98.25%的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spherical maps visualization Texture feature neural classifier for remote sensing image retrieval systems Visualizing inner structures in multimodal volume data Linear features detection in SAR images for urban analysis Towards point-based acquisition and rendering of large real-world environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1