REP-Model: A deep learning framework for replacing ad billboards in soccer videos

V. Ghassab, Kamal Maanicshah, N. Bouguila, Paul Green
{"title":"REP-Model: A deep learning framework for replacing ad billboards in soccer videos","authors":"V. Ghassab, Kamal Maanicshah, N. Bouguila, Paul Green","doi":"10.1109/ISM.2020.00032","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel framework for replacing advertisement contents in soccer videos with an automatic way by using deep learning strategies. We begin by applying UNET (an image segmentation convolutional neural network technique) for content segmentation and detection. Subsequently, after reconstructing the segmented content in the video frames (considering the apparent loss in detection), we will replace the unwanted content by new one using a homography mapping procedure. Furthermore, the replacement key points in each frame will be tracked into the next frames considering the camera zoom-in and zoom-out controlling. Since the movement of objects in video can disrupt the alignment between frames and correspondingly make the homography matrix calculation erroneous, we use Mask R-CNN to mask and remove the moving objects from the scene. Such framework is denominated as REP-Model which stands for a replacing model.","PeriodicalId":120972,"journal":{"name":"2020 IEEE International Symposium on Multimedia (ISM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2020.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel framework for replacing advertisement contents in soccer videos with an automatic way by using deep learning strategies. We begin by applying UNET (an image segmentation convolutional neural network technique) for content segmentation and detection. Subsequently, after reconstructing the segmented content in the video frames (considering the apparent loss in detection), we will replace the unwanted content by new one using a homography mapping procedure. Furthermore, the replacement key points in each frame will be tracked into the next frames considering the camera zoom-in and zoom-out controlling. Since the movement of objects in video can disrupt the alignment between frames and correspondingly make the homography matrix calculation erroneous, we use Mask R-CNN to mask and remove the moving objects from the scene. Such framework is denominated as REP-Model which stands for a replacing model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
REP-Model:一个深度学习框架,用于替换足球视频中的广告牌
在本文中,我们提出了一个新的框架,利用深度学习策略自动替换足球视频中的广告内容。我们首先应用UNET(一种图像分割卷积神经网络技术)进行内容分割和检测。随后,在重建视频帧中的分割内容后(考虑到检测中的明显损失),我们将使用单应性映射过程将不需要的内容替换为新的内容。此外,考虑到摄像机的放大和缩小控制,每帧中的替换关键点将被跟踪到下一帧。由于视频中物体的运动可能会破坏帧之间的对齐,从而导致单应性矩阵计算错误,因此我们使用Mask R-CNN对场景中的运动物体进行掩码和移除。这种框架被命名为REP-Model,代表替换模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structured Pruning of LSTMs via Eigenanalysis and Geometric Median for Mobile Multimedia and Deep Learning Applications Real-Time Detection of Events in Soccer Videos using 3D Convolutional Neural Networks Audio Captioning Based on Combined Audio and Semantic Embeddings Two types of flows admission control method for maximizing all user satisfaction considering seek-bar operation Better Look Twice - Improving Visual Scene Perception Using a Two-Stage Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1