Multiscale approach for skin lesion analysis and classification

Y. Filali, A. Ennouni, M. A. Sabri, A. Aarab
{"title":"Multiscale approach for skin lesion analysis and classification","authors":"Y. Filali, A. Ennouni, M. A. Sabri, A. Aarab","doi":"10.1109/ATSIP.2017.8075545","DOIUrl":null,"url":null,"abstract":"Skin cancer is one of the most deadly cancers in the world. If not diagnosed in early stages it might be hard to cure. This paper suggests a new approach for automatic segmentation and classification of skin lesion for dermoscopic images. The segmentation is based on a pre-processing; using the color structure-texture image decomposition to decompose a textured image into texture and geometrical components. Geometrical component is used in the lesion segmentation and the texture component is used to extract the lesion texture features. Feature classification is performed using the Support Vector Machine (SVM) classifier. The efficiency and the performance of the proposed approach are evaluated in comparison with recent and robust dermoscopic approaches from literature.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Skin cancer is one of the most deadly cancers in the world. If not diagnosed in early stages it might be hard to cure. This paper suggests a new approach for automatic segmentation and classification of skin lesion for dermoscopic images. The segmentation is based on a pre-processing; using the color structure-texture image decomposition to decompose a textured image into texture and geometrical components. Geometrical component is used in the lesion segmentation and the texture component is used to extract the lesion texture features. Feature classification is performed using the Support Vector Machine (SVM) classifier. The efficiency and the performance of the proposed approach are evaluated in comparison with recent and robust dermoscopic approaches from literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
皮肤病变分析与分类的多尺度方法
皮肤癌是世界上最致命的癌症之一。如果不及早诊断,可能很难治愈。提出了一种皮肤镜图像中皮肤损伤自动分割与分类的新方法。该分割基于预处理;利用彩色结构-纹理图像分解将纹理图像分解为纹理和几何分量。几何分量用于病灶分割,纹理分量用于提取病灶纹理特征。特征分类使用支持向量机(SVM)分类器进行。效率和提出的方法的性能进行了评估,与最近和强大的皮肤镜方法从文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speckle noise reduction in digital speckle pattern interferometry using Riesz wavelets transform A new GLBSIF descriptor for face recognition in the uncontrolled environments Saliency attention and sift keypoints combination for automatic target recognition on MSTAR dataset A comparative study of interworking methods among differents rats in 5G context Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1