ProbFuse: a probabilistic approach to data fusion

David Lillis, F. Toolan, Rem W. Collier, J. Dunnion
{"title":"ProbFuse: a probabilistic approach to data fusion","authors":"David Lillis, F. Toolan, Rem W. Collier, J. Dunnion","doi":"10.1145/1148170.1148197","DOIUrl":null,"url":null,"abstract":"Data fusion is the combination of the results of independent searches on a document collection into one single output result set. It has been shown in the past that this can greatly improve retrieval effectiveness over that of the individual results.This paper presents probFuse, a probabilistic approach to data fusion. ProbFuse assumes that the performance of the individual input systems on a number of training queries is indicative of their future performance. The fused result set is based on probabilities of relevance calculated during this training process. Retrieval experiments using data from the TREC ad hoc collection demonstrate that probFuse achieves results superior to that of the popular CombMNZ fusion algorithm.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

Data fusion is the combination of the results of independent searches on a document collection into one single output result set. It has been shown in the past that this can greatly improve retrieval effectiveness over that of the individual results.This paper presents probFuse, a probabilistic approach to data fusion. ProbFuse assumes that the performance of the individual input systems on a number of training queries is indicative of their future performance. The fused result set is based on probabilities of relevance calculated during this training process. Retrieval experiments using data from the TREC ad hoc collection demonstrate that probFuse achieves results superior to that of the popular CombMNZ fusion algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ProbFuse:一种数据融合的概率方法
数据融合是将文档集合上的独立搜索结果组合到一个输出结果集中。过去已经证明,这可以大大提高检索效率,而不是单个结果。提出了一种基于概率的数据融合方法probFuse。ProbFuse假设单个输入系统在许多训练查询上的表现表明了它们未来的表现。融合的结果集是基于在训练过程中计算的相关概率。利用TREC ad hoc数据集进行的检索实验表明,probFuse取得的结果优于流行的CombMNZ融合算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strict and vague interpretation of XML-retrieval queries AggregateRank: bringing order to web sites Text clustering with extended user feedback Improving personalized web search using result diversification High accuracy retrieval with multiple nested ranker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1