Discovering functional gene pathways associated with cancer heterogeneity via sparse supervised learning

Shuichi Kawano, Teppei Shimamura, A. Niida, S. Imoto, R. Yamaguchi, Masao Nagasaki, Ryo Yoshida, C. Print, S. Miyano
{"title":"Discovering functional gene pathways associated with cancer heterogeneity via sparse supervised learning","authors":"Shuichi Kawano, Teppei Shimamura, A. Niida, S. Imoto, R. Yamaguchi, Masao Nagasaki, Ryo Yoshida, C. Print, S. Miyano","doi":"10.1109/BIBM.2010.5706572","DOIUrl":null,"url":null,"abstract":"We propose a statistical method for uncovering gene pathways that characterize cancer heterogeneity. To incorporate knowledge of the pathways into the model, we define a set of activities of pathways from microarray gene expression data based on the sparse probabilistic principal component analysis. A pathway activity logistic regression model is then formulated for cancer phenotype. To select pathway activities related to binary cancer phenotypes, we use the elastic net for the parameter estimation and derive a model selection criterion for selecting tuning parameters included in the model estimation. Our proposed method can also reverse-engineer gene networks based on the identified multiple pathways that enables us to discover novel gene-gene associations relating with the cancer phenotypes. We illustrate the whole process of the proposed method through the analysis of breast cancer gene expression data.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a statistical method for uncovering gene pathways that characterize cancer heterogeneity. To incorporate knowledge of the pathways into the model, we define a set of activities of pathways from microarray gene expression data based on the sparse probabilistic principal component analysis. A pathway activity logistic regression model is then formulated for cancer phenotype. To select pathway activities related to binary cancer phenotypes, we use the elastic net for the parameter estimation and derive a model selection criterion for selecting tuning parameters included in the model estimation. Our proposed method can also reverse-engineer gene networks based on the identified multiple pathways that enables us to discover novel gene-gene associations relating with the cancer phenotypes. We illustrate the whole process of the proposed method through the analysis of breast cancer gene expression data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过稀疏监督学习发现与癌症异质性相关的功能基因通路
我们提出了一种统计方法来揭示表征癌症异质性的基因途径。为了将途径的知识纳入模型,我们基于稀疏概率主成分分析从微阵列基因表达数据中定义了一组途径的活动。然后为癌症表型制定了途径活性逻辑回归模型。为了选择与二元癌症表型相关的途径活性,我们使用弹性网络进行参数估计,并推导出模型选择标准,用于选择模型估计中包含的调谐参数。我们提出的方法还可以基于已确定的多种途径对基因网络进行逆向工程,使我们能够发现与癌症表型相关的新基因-基因关联。我们通过对乳腺癌基因表达数据的分析来说明所提出方法的整个过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1