Online Food Recipe Title Semantics: Combining Nutrient Facts and Topics

T. Kusmierczyk, K. Nørvåg
{"title":"Online Food Recipe Title Semantics: Combining Nutrient Facts and Topics","authors":"T. Kusmierczyk, K. Nørvåg","doi":"10.1145/2983323.2983897","DOIUrl":null,"url":null,"abstract":"Dietary pattern analysis is an important research area, and recently the availability of rich resources in food-focused social networks has enabled new opportunities in that field. However, there is a little understanding of how online textual content is related to actual health factors, e.g., nutritional values. To contribute to this lack of knowledge, we present a novel approach to mine and model online food content by combining text topics with related nutrient facts. Our empirical analysis reveals a strong correlation between them and our experiments show the extent to which it is possible to predict nutrient facts from meal name.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Dietary pattern analysis is an important research area, and recently the availability of rich resources in food-focused social networks has enabled new opportunities in that field. However, there is a little understanding of how online textual content is related to actual health factors, e.g., nutritional values. To contribute to this lack of knowledge, we present a novel approach to mine and model online food content by combining text topics with related nutrient facts. Our empirical analysis reveals a strong correlation between them and our experiments show the extent to which it is possible to predict nutrient facts from meal name.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线食品配方标题语义:结合营养事实和主题
饮食模式分析是一个重要的研究领域,最近以食物为中心的社交网络提供了丰富的资源,为该领域提供了新的机会。然而,人们对在线文本内容与实际健康因素(如营养价值)之间的关系知之甚少。为了弥补这种知识的缺乏,我们提出了一种新的方法,通过将文本主题与相关的营养事实相结合,来挖掘和建模在线食品内容。我们的实证分析表明,它们之间存在很强的相关性,我们的实验表明,从膳食名称中预测营养成分是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Querying Minimal Steiner Maximum-Connected Subgraphs in Large Graphs aNMM: Ranking Short Answer Texts with Attention-Based Neural Matching Model Approximate Discovery of Functional Dependencies for Large Datasets Mining Shopping Patterns for Divergent Urban Regions by Incorporating Mobility Data A Personal Perspective and Retrospective on Web Search Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1