Resume Classification Using ML Techniques

B Surendiran, Tejus Paturu, Harsha Vardhan Chirumamilla, Maruprolu Naga Raju Reddy
{"title":"Resume Classification Using ML Techniques","authors":"B Surendiran, Tejus Paturu, Harsha Vardhan Chirumamilla, Maruprolu Naga Raju Reddy","doi":"10.1109/IConSCEPT57958.2023.10169907","DOIUrl":null,"url":null,"abstract":"In today’s world, a typical job ad on the web attracts a massive number of applications in a short period of time. Manual screening of these resumes is not only time-consuming but also very expensive for the hiring companies. To address these challenges, this research paper proposes a solution that aims to automatically classify resumes to their corresponding suitable positions. To find the best possible solution, different ML techniques like Decision Tree, Random Forest, KNN, Support Vector are researched and the most accurate one is chosen. This approach has the potential to revolutionize the hiring process by reducing costs, saving time, and ensuring fairness.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10169907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In today’s world, a typical job ad on the web attracts a massive number of applications in a short period of time. Manual screening of these resumes is not only time-consuming but also very expensive for the hiring companies. To address these challenges, this research paper proposes a solution that aims to automatically classify resumes to their corresponding suitable positions. To find the best possible solution, different ML techniques like Decision Tree, Random Forest, KNN, Support Vector are researched and the most accurate one is chosen. This approach has the potential to revolutionize the hiring process by reducing costs, saving time, and ensuring fairness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用ML技术进行简历分类
在当今世界,一个典型的网络招聘广告会在短时间内吸引大量的申请。对招聘公司来说,手工筛选这些简历不仅耗时,而且成本也很高。针对这些挑战,本文提出了一种解决方案,旨在将简历自动分类到相应的合适职位。为了找到最好的解决方案,研究了不同的ML技术,如决策树、随机森林、KNN、支持向量,并选择了最准确的一个。这种方法有可能通过降低成本、节省时间和确保公平来彻底改变招聘过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three Port Full Bridge PFC Converter for Hybrid AC/DC/DC System with Fuzzy Logic Control ESH: A Non-Monotonic Activation Function For Image Classification Image Classification using Quantum Convolutional Neural Network Machine Learning Based Predictive Model for Intrusion Detection EV Sahayak: Android Assistance App for Electric Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1