{"title":"Resume Classification Using ML Techniques","authors":"B Surendiran, Tejus Paturu, Harsha Vardhan Chirumamilla, Maruprolu Naga Raju Reddy","doi":"10.1109/IConSCEPT57958.2023.10169907","DOIUrl":null,"url":null,"abstract":"In today’s world, a typical job ad on the web attracts a massive number of applications in a short period of time. Manual screening of these resumes is not only time-consuming but also very expensive for the hiring companies. To address these challenges, this research paper proposes a solution that aims to automatically classify resumes to their corresponding suitable positions. To find the best possible solution, different ML techniques like Decision Tree, Random Forest, KNN, Support Vector are researched and the most accurate one is chosen. This approach has the potential to revolutionize the hiring process by reducing costs, saving time, and ensuring fairness.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10169907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In today’s world, a typical job ad on the web attracts a massive number of applications in a short period of time. Manual screening of these resumes is not only time-consuming but also very expensive for the hiring companies. To address these challenges, this research paper proposes a solution that aims to automatically classify resumes to their corresponding suitable positions. To find the best possible solution, different ML techniques like Decision Tree, Random Forest, KNN, Support Vector are researched and the most accurate one is chosen. This approach has the potential to revolutionize the hiring process by reducing costs, saving time, and ensuring fairness.