D. Sacharny, T. Henderson, Michael Cline, Ben Russon, EJay Guo
{"title":"FAA-NASA vs. Lane-Based Strategic Deconfliction","authors":"D. Sacharny, T. Henderson, Michael Cline, Ben Russon, EJay Guo","doi":"10.1109/MFI49285.2020.9235239","DOIUrl":null,"url":null,"abstract":"The Federal Aviation Administration (FAA) and NASA have provided guidelines for Unmanned Aircraft Systems (UAS) to ensure adequate safety separation of aircraft, and in terms of UAS Traffic Management (UTM) have stated[1]:A UTM Operation should be free of 4-D intersection with all other known UTM Operations prior to departure and this should be known as Strategic Deconfliction within UTM … A UTM Operator must have a facility to negotiate deconfliction of operations with other UTM Operators … There needs to be a capability to allow for intersecting operations.The latter statement means that UTM Operators must be able to fly safely in the same geographic area. The current FAA-NASA approach to strategic deconfliction is to provide a set of geographic grid elements, and then have every new flight pairwise deconflict with UTM Operators with flights in the same grid elements. Note that this imposes a high computational burden in resolving these 4D flight paths, and has side effects in terms of limiting access to the airspace (e.g., if a new flight is deconflicted and added to the common grid elements during this analysis, then the new flight must start all over).We have proposed a lane-based approach to large-scale UAS traffic management [2], [3] which uses one-way lanes, and roundabouts at lane intersections to allow a much more efficient analysis and guarantee of separation safety. We present here the results of an in-depth comparison of FAA-NASA strategic deconfliction (FNSD) and Lane-based strategic deconfliction (LSD) and demonstrate that FNSD suffers from several types of complexity which are generally absent from the lane-based method. This algorithm is based on optimization methods which form the core origins of artificial intelligence.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The Federal Aviation Administration (FAA) and NASA have provided guidelines for Unmanned Aircraft Systems (UAS) to ensure adequate safety separation of aircraft, and in terms of UAS Traffic Management (UTM) have stated[1]:A UTM Operation should be free of 4-D intersection with all other known UTM Operations prior to departure and this should be known as Strategic Deconfliction within UTM … A UTM Operator must have a facility to negotiate deconfliction of operations with other UTM Operators … There needs to be a capability to allow for intersecting operations.The latter statement means that UTM Operators must be able to fly safely in the same geographic area. The current FAA-NASA approach to strategic deconfliction is to provide a set of geographic grid elements, and then have every new flight pairwise deconflict with UTM Operators with flights in the same grid elements. Note that this imposes a high computational burden in resolving these 4D flight paths, and has side effects in terms of limiting access to the airspace (e.g., if a new flight is deconflicted and added to the common grid elements during this analysis, then the new flight must start all over).We have proposed a lane-based approach to large-scale UAS traffic management [2], [3] which uses one-way lanes, and roundabouts at lane intersections to allow a much more efficient analysis and guarantee of separation safety. We present here the results of an in-depth comparison of FAA-NASA strategic deconfliction (FNSD) and Lane-based strategic deconfliction (LSD) and demonstrate that FNSD suffers from several types of complexity which are generally absent from the lane-based method. This algorithm is based on optimization methods which form the core origins of artificial intelligence.