Analysis and comparison of denoising methods for photon-counting laser data

Jingyun Liu, Jun Liu
{"title":"Analysis and comparison of denoising methods for photon-counting laser data","authors":"Jingyun Liu, Jun Liu","doi":"10.1109/ICGMRS55602.2022.9849310","DOIUrl":null,"url":null,"abstract":"The Ice, Cloud, and Land Elevation Satellite-2(ICESat-2) is equipped with the advanced topography laser altimeter system (ATLAS). Product data has background noise due to atmospheric scattering, solar radiation, instrument noise, etc. So, data denoising is necessary before processing and applying the product data. This paper experimented with ICESat-2 land data using three methods: the K-nearest neighbor distance algorithm, DBSCAN algorithm, and DRAGANN algorithm. The experimental results show that the DRAGANN algorithm has the best accuracy. The DBSCAN algorithm is suitable for dealing with land areas with much vegetation, and the KNN algorithm is suitable for dealing with land areas with less vegetation. Different surface types greatly affect the accuracy of these methods for denoising.","PeriodicalId":129909,"journal":{"name":"2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGMRS55602.2022.9849310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Ice, Cloud, and Land Elevation Satellite-2(ICESat-2) is equipped with the advanced topography laser altimeter system (ATLAS). Product data has background noise due to atmospheric scattering, solar radiation, instrument noise, etc. So, data denoising is necessary before processing and applying the product data. This paper experimented with ICESat-2 land data using three methods: the K-nearest neighbor distance algorithm, DBSCAN algorithm, and DRAGANN algorithm. The experimental results show that the DRAGANN algorithm has the best accuracy. The DBSCAN algorithm is suitable for dealing with land areas with much vegetation, and the KNN algorithm is suitable for dealing with land areas with less vegetation. Different surface types greatly affect the accuracy of these methods for denoising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光子计数激光数据去噪方法的分析与比较
冰、云和陆地高程卫星-2(ICESat-2)配备了先进的地形激光测高仪系统(ATLAS)。产品数据存在大气散射、太阳辐射、仪器噪声等背景噪声。因此,在对产品数据进行处理和应用之前,必须对数据进行去噪处理。本文以ICESat-2陆地数据为实验对象,采用了k -最近邻距离算法、DBSCAN算法和DRAGANN算法三种方法。实验结果表明,DRAGANN算法具有较好的准确率。DBSCAN算法适用于处理植被较多的土地区域,KNN算法适用于处理植被较少的土地区域。不同的表面类型对这些去噪方法的精度影响很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on UAV remote sensing multispectral image compression based on CNN MDNet: A Multi-modal Dual Branch Road Extraction Network Using Infrared Information Quantitative Evaluation of Digital Orthophoto Map Influence of shallow ocean front on propagation characteristics of low frequency sound energy flow Application of GA-BP neural network in prediction of chl-a concentration in Wuliangsu Lake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1