An efficient digital architecture for character recognition

M. Gioiello, F. Sorbello, A. Tarantino, G. Vassallo
{"title":"An efficient digital architecture for character recognition","authors":"M. Gioiello, F. Sorbello, A. Tarantino, G. Vassallo","doi":"10.1109/CAMP.1995.521031","DOIUrl":null,"url":null,"abstract":"We introduce a new digital neural architecture designed for automatic hand-written characters recognition. The architecture implements a two-layer perceptron off-line trained by conjugate gradient descent algorithm and the final weights are quantized and stored in a RAM. The architecture was developed and tested using the VHDL Alliance 2.0 CAD System simulator: it is easy to implement using standard VLSI technologies and may be used to deal with multi-level inputs.","PeriodicalId":277209,"journal":{"name":"Proceedings of Conference on Computer Architectures for Machine Perception","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Conference on Computer Architectures for Machine Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMP.1995.521031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a new digital neural architecture designed for automatic hand-written characters recognition. The architecture implements a two-layer perceptron off-line trained by conjugate gradient descent algorithm and the final weights are quantized and stored in a RAM. The architecture was developed and tested using the VHDL Alliance 2.0 CAD System simulator: it is easy to implement using standard VLSI technologies and may be used to deal with multi-level inputs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种高效的字符识别数字体系结构
本文介绍了一种新的用于手写字符自动识别的数字神经结构。该结构采用共轭梯度下降算法实现了一个离线训练的两层感知器,最终的权重被量化并存储在RAM中。该体系结构是使用VHDL联盟2.0 CAD系统模拟器开发和测试的:使用标准VLSI技术易于实现,可用于处理多级输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object parts matching using Hopfield neural networks Systolic cellular logic: architecture and performance evaluation Hierarchical and modular attention Parallelizable asychronous by blocks algorithms for neural computing Solving the shape-from-shading problem on the CM-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1