Ryan Cotterell, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eisner, Mans Hulden
{"title":"The SIGMORPHON 2016 Shared Task—Morphological Reinflection","authors":"Ryan Cotterell, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eisner, Mans Hulden","doi":"10.18653/v1/W16-2002","DOIUrl":null,"url":null,"abstract":"The 2016 SIGMORPHON Shared Task was devoted to the problem of morphological reinflection. It introduced morphological datasets for 10 languages with diverse ty-pological characteristics. The shared task drew submissions from 9 teams representing 11 institutions reflecting a variety of approaches to addressing supervised learning of reinflection. For the simplest task, in-flection generation from lemmas, the best system averaged 95.56% exact-match accuracy across all languages, ranging from Maltese (88.99%) to Hungarian (99.30%). With the relatively large training datasets provided, recurrent neural network architectures consistently performed best—in fact, there was a significant margin between neural and non-neural approaches. The best neural approach, averaged over all tasks and languages, outperformed the best non-neural one by 13.76% absolute; on individual tasks and languages the gap in accuracy sometimes exceeded 60%. Overall, the results show a strong state of the art, and serve as encouragement for future shared tasks that explore morphological analysis and generation with varying degrees of supervision.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"236","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-2002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 236
Abstract
The 2016 SIGMORPHON Shared Task was devoted to the problem of morphological reinflection. It introduced morphological datasets for 10 languages with diverse ty-pological characteristics. The shared task drew submissions from 9 teams representing 11 institutions reflecting a variety of approaches to addressing supervised learning of reinflection. For the simplest task, in-flection generation from lemmas, the best system averaged 95.56% exact-match accuracy across all languages, ranging from Maltese (88.99%) to Hungarian (99.30%). With the relatively large training datasets provided, recurrent neural network architectures consistently performed best—in fact, there was a significant margin between neural and non-neural approaches. The best neural approach, averaged over all tasks and languages, outperformed the best non-neural one by 13.76% absolute; on individual tasks and languages the gap in accuracy sometimes exceeded 60%. Overall, the results show a strong state of the art, and serve as encouragement for future shared tasks that explore morphological analysis and generation with varying degrees of supervision.