GhostBusters: Mitigating Spectre Attacks on a DBT-Based Processor

Simon Rokicki
{"title":"GhostBusters: Mitigating Spectre Attacks on a DBT-Based Processor","authors":"Simon Rokicki","doi":"10.23919/DATE48585.2020.9116402","DOIUrl":null,"url":null,"abstract":"Unveiled early 2018, the Spectre vulnerability affects most of the modern high-performance processors. Spectre variants exploit the speculative execution mechanisms and a cache side-channel attack to leak secret data. As of today, the main countermeasures consist of turning off the speculation, which drastically reduces the processor performance. In this work, we focus on a different kind of micro-architecture: the DBT based processors, such as Transmeta Crusoe [1], NVidia Denver [2], or Hybrid-DBT [3]. Instead of using complex outof-order (OoO) mechanisms, those cores combines a software Dynamic Binary Translation mechanism (DBT) and a parallel in-order architecture, typically a VLIW core. The DBT is in charge of translating and optimizing the binaries before their execution. Studies show that DBT based processors can reach the performance level of OoO cores for regular enough applications. In this paper, we demonstrate that, even if those processors do not use OoO execution, they are still vulnerable to Spectre variants, because of the DBT optimizations. However, we also demonstrate that those systems can easily be patched, as the DBT is done in software and has fine-grained control over the optimization process.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Unveiled early 2018, the Spectre vulnerability affects most of the modern high-performance processors. Spectre variants exploit the speculative execution mechanisms and a cache side-channel attack to leak secret data. As of today, the main countermeasures consist of turning off the speculation, which drastically reduces the processor performance. In this work, we focus on a different kind of micro-architecture: the DBT based processors, such as Transmeta Crusoe [1], NVidia Denver [2], or Hybrid-DBT [3]. Instead of using complex outof-order (OoO) mechanisms, those cores combines a software Dynamic Binary Translation mechanism (DBT) and a parallel in-order architecture, typically a VLIW core. The DBT is in charge of translating and optimizing the binaries before their execution. Studies show that DBT based processors can reach the performance level of OoO cores for regular enough applications. In this paper, we demonstrate that, even if those processors do not use OoO execution, they are still vulnerable to Spectre variants, because of the DBT optimizations. However, we also demonstrate that those systems can easily be patched, as the DBT is done in software and has fine-grained control over the optimization process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
捉鬼敢死队:减轻基于dbt处理器上的幽灵攻击
“幽灵”漏洞于2018年初公布,影响了大多数现代高性能处理器。Spectre变体利用推测执行机制和缓存侧通道攻击来泄露机密数据。到目前为止,主要的对策包括关闭猜测,这大大降低了处理器的性能。在这项工作中,我们专注于一种不同的微架构:基于DBT的处理器,如Transmeta Crusoe[1]、NVidia Denver[2]或Hybrid-DBT[3]。这些核心没有使用复杂的无序机制,而是结合了软件动态二进制转换机制(DBT)和并行有序架构(通常是VLIW核心)。DBT负责在二进制文件执行之前对其进行翻译和优化。研究表明,对于常规的应用程序,基于DBT的处理器可以达到OoO核的性能水平。在本文中,我们证明,即使这些处理器不使用OoO执行,由于DBT优化,它们仍然容易受到Spectre变体的攻击。然而,我们也证明了这些系统可以很容易地修补,因为DBT是在软件中完成的,并且对优化过程有细粒度的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1