Efficient Multi-objective Optimizers by Meta-heuristics for Power System Control

Ghouraf Djamel Eddine, Naceri Abdellatif
{"title":"Efficient Multi-objective Optimizers by Meta-heuristics for Power System Control","authors":"Ghouraf Djamel Eddine, Naceri Abdellatif","doi":"10.37394/23205.2022.21.38","DOIUrl":null,"url":null,"abstract":"This paper proposes the Meta-heuristics approaches using genetic algorithms (GA) and particle swarm optimization (PSO) for tuning power system stabilizer PSS parameters. In this work we have proposed a multi-objective function based on two objectives: first maximize the stability margin by increasing the damping factors and second minimize the eigenvalues real parts. For the effectiveness function proposed check, we compared it with mono-objective function. The simulation results, by comparative study between genetic algorithms and particle swarm optimizations techniques via multi objective and mono objective functions proved the efficiency of the PSS adapted by multi-objective function based genetic algorithms in comparison with particle swarm optimization, it’s enhanced stability of power system works under different operating modes and different network configurations. The simulation results obtained under developed graphical user interface (GUI).","PeriodicalId":332148,"journal":{"name":"WSEAS TRANSACTIONS ON COMPUTERS","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON COMPUTERS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23205.2022.21.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes the Meta-heuristics approaches using genetic algorithms (GA) and particle swarm optimization (PSO) for tuning power system stabilizer PSS parameters. In this work we have proposed a multi-objective function based on two objectives: first maximize the stability margin by increasing the damping factors and second minimize the eigenvalues real parts. For the effectiveness function proposed check, we compared it with mono-objective function. The simulation results, by comparative study between genetic algorithms and particle swarm optimizations techniques via multi objective and mono objective functions proved the efficiency of the PSS adapted by multi-objective function based genetic algorithms in comparison with particle swarm optimization, it’s enhanced stability of power system works under different operating modes and different network configurations. The simulation results obtained under developed graphical user interface (GUI).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于元启发式的电力系统控制高效多目标优化器
本文提出了基于遗传算法和粒子群算法的电力系统稳定器PSS参数整定的元启发式方法。在这项工作中,我们提出了一个基于两个目标的多目标函数:第一个目标是通过增加阻尼因子来最大化稳定裕度,第二个目标是最小化特征值实部。对于所提出的有效性函数检验,我们将其与单目标函数进行了比较。仿真结果通过对遗传算法与粒子群多目标和单目标优化技术的比较研究,证明了基于多目标函数的遗传算法与粒子群优化相比,采用多目标函数的遗传算法所适应的PSS的有效性,提高了电力系统在不同运行模式和不同网络配置下的稳定性。仿真结果在开发的图形用户界面(GUI)下得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Medical Image Classification using a Many to Many Relation, Multilayered Fuzzy Systems and AI Aspects of Symmetry in Petri Nets Chaos in Order: Applying ML, NLP, and Chaos Theory in Open Source Intelligence for Counter-Terrorism Combinatorial Optimization of Engineering Systems based on Diagrammatic Design Federated Learning: Attacks and Defenses, Rewards, Energy Efficiency: Past, Present and Future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1