Simulation-based Parameter Optimization Framework for Large-Scale Hybrid Smart Grid Communications Systems Design

Adarsh Hasandka, Jianhua Zhang, S. Alam, A. Florita, B. Hodge
{"title":"Simulation-based Parameter Optimization Framework for Large-Scale Hybrid Smart Grid Communications Systems Design","authors":"Adarsh Hasandka, Jianhua Zhang, S. Alam, A. Florita, B. Hodge","doi":"10.1109/SmartGridComm.2018.8587472","DOIUrl":null,"url":null,"abstract":"The design of reliable, dynamic, fault-tolerant hybrid smart grid communication networks is a challenge to achieve for autonomous power grids. Hybrid networks use different communications technologies for different area networks. A simulation-based parameter optimization framework is proposed to tune parameters of hybrid communication technologies to achieve the optimal network performance. It consists of three main components: a parallel executor used to speedup a list of simulations; a sampler running simulations using the parallel executor at each generation; and a hybrid stochastic optimization algorithm for tuning configurable parameters of hybrid designs and applications. The proposed hybrid metaheuristic optimization algorithm combines an evolutionary algorithm with a gradient method to quickly achieve an approximately global optimum solution. Three optimization test functions are employed to train the adjustable parameters of the hybrid algorithm. Results show the proposed parameter optimization framework can help the designer choose the right hybrid architecture with an optimal parameter set for a large-scale broadband PLC-WiMAX hybrid smart grid communication network.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"482 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The design of reliable, dynamic, fault-tolerant hybrid smart grid communication networks is a challenge to achieve for autonomous power grids. Hybrid networks use different communications technologies for different area networks. A simulation-based parameter optimization framework is proposed to tune parameters of hybrid communication technologies to achieve the optimal network performance. It consists of three main components: a parallel executor used to speedup a list of simulations; a sampler running simulations using the parallel executor at each generation; and a hybrid stochastic optimization algorithm for tuning configurable parameters of hybrid designs and applications. The proposed hybrid metaheuristic optimization algorithm combines an evolutionary algorithm with a gradient method to quickly achieve an approximately global optimum solution. Three optimization test functions are employed to train the adjustable parameters of the hybrid algorithm. Results show the proposed parameter optimization framework can help the designer choose the right hybrid architecture with an optimal parameter set for a large-scale broadband PLC-WiMAX hybrid smart grid communication network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于仿真的大型混合智能电网通信系统参数优化框架设计
设计可靠、动态、容错的混合智能电网通信网络是自主电网面临的一个挑战。混合网络在不同的区域网络中使用不同的通信技术。提出了一种基于仿真的参数优化框架,对混合通信技术的参数进行优化,使网络性能达到最优。它由三个主要部分组成:一个用于加速一系列模拟的并行执行器;使用并行执行器在每一代上运行模拟的采样器;并提出了一种混合随机优化算法,用于混合设计和应用的可配置参数的整定。提出的混合元启发式优化算法将进化算法与梯度法相结合,快速实现近似全局最优解。采用三个优化测试函数来训练混合算法的可调参数。结果表明,所提出的参数优化框架可以帮助设计者在大规模宽带PLC-WiMAX混合智能电网通信网络中选择具有最优参数集的合适混合架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behind-the-Meter Solar Generation Disaggregation using Consumer Mixture Models Coordinated Planning of Multi-Energy System with District Heating Network A Cost-efficient Software Testbed for Cyber-Physical Security in IEC 61850-based Substations Joint Optimal Power Flow Routing and Decentralized Scheduling with Vehicle-to-Grid Regulation Service Energy Flexibility for Systems with large Thermal Masses with Applications to Shopping Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1