{"title":"Periodic-Doubling Bifurcation of a Circuit With a Fractional-Order Memristor","authors":"Y. Yu, Y. Chen","doi":"10.1115/detc2019-98178","DOIUrl":null,"url":null,"abstract":"\n A new fractional-order current-controlled memristor is proposed by the fact of the memory loss. Excited by sinusoidal current, the generalized hysteresis loops of the new fractional-order memristor are no longer symmetrical to the origin and the time to reach the steady state is longer than the integer-order memristor’s. The dynamical behaviors of a new fractional-order memristive circuit system whose state variables have different derivation orders are investigated by theoretical analyses and simulated numerically. It is shown that the new fractional-order memristive circuit system goes into chaos by period-doubling bifurcation; the periodic windows are induced by the discontinuous change of derivative order between variables.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A new fractional-order current-controlled memristor is proposed by the fact of the memory loss. Excited by sinusoidal current, the generalized hysteresis loops of the new fractional-order memristor are no longer symmetrical to the origin and the time to reach the steady state is longer than the integer-order memristor’s. The dynamical behaviors of a new fractional-order memristive circuit system whose state variables have different derivation orders are investigated by theoretical analyses and simulated numerically. It is shown that the new fractional-order memristive circuit system goes into chaos by period-doubling bifurcation; the periodic windows are induced by the discontinuous change of derivative order between variables.