{"title":"A Multi-agent-Based Evolution Model of Innovation Networks in Dynamic Environments","authors":"Qingqi Long, Shuliang Li","doi":"10.1109/MCSI.2014.34","DOIUrl":null,"url":null,"abstract":"An innovation network can be considered as a complex adaptive system with evolution affected by dynamic environments. This paper establishes a multi-agent-based evolution model of innovation networks under dynamic settings through computational and logical modeling, and a multi-agent system paradigm. This evolution model is composed of several sub-models of agents' knowledge production by independent innovations in dynamic situations, knowledge learning by cooperative innovations covering agents' heterogeneities, decision-making for innovation selections, and knowledge update considering decay factors. On the basis of above-mentioned sub-models, an evolution rule for multi-agent based innovation network system is given. The proposed evolution model can be utilized to simulate and analyze different scenarios of innovation networks in various dynamic environments and support decision-making for innovation network optimization.","PeriodicalId":202841,"journal":{"name":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2014.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
An innovation network can be considered as a complex adaptive system with evolution affected by dynamic environments. This paper establishes a multi-agent-based evolution model of innovation networks under dynamic settings through computational and logical modeling, and a multi-agent system paradigm. This evolution model is composed of several sub-models of agents' knowledge production by independent innovations in dynamic situations, knowledge learning by cooperative innovations covering agents' heterogeneities, decision-making for innovation selections, and knowledge update considering decay factors. On the basis of above-mentioned sub-models, an evolution rule for multi-agent based innovation network system is given. The proposed evolution model can be utilized to simulate and analyze different scenarios of innovation networks in various dynamic environments and support decision-making for innovation network optimization.