Integrating Prior Knowledge with Graph Encoder for Gene Regulatory Inference from Single-cell RNA-Seq Data

Jiawei Li, Fan Yang, Fang Wang, Yu Rong, P. Zhao, Shizhan Chen, Jianhua Yao, Jijun Tang, Fei Guo
{"title":"Integrating Prior Knowledge with Graph Encoder for Gene Regulatory Inference from Single-cell RNA-Seq Data","authors":"Jiawei Li, Fan Yang, Fang Wang, Yu Rong, P. Zhao, Shizhan Chen, Jianhua Yao, Jijun Tang, Fei Guo","doi":"10.1109/BIBM55620.2022.9995287","DOIUrl":null,"url":null,"abstract":"Inferring gene regulatory networks based on single-cell transcriptomes is critical for systematically understanding cell-specific regulatory networks and discovering drug targets in tumor cells. Here we show that existing methods mainly perform co-expression analysis and apply the image-based model to deal with the non-euclidean scRNA-seq data, which may not reasonably handle the dropout problem and not fully take advantage of the validated gene regulatory topology. We propose a graph-based end-to-end deep learning model for GRN inference (GRNInfer) with the help of known regulatory relations through transductive learning. The robustness and superiority of the model are demonstrated by comparative experiments.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inferring gene regulatory networks based on single-cell transcriptomes is critical for systematically understanding cell-specific regulatory networks and discovering drug targets in tumor cells. Here we show that existing methods mainly perform co-expression analysis and apply the image-based model to deal with the non-euclidean scRNA-seq data, which may not reasonably handle the dropout problem and not fully take advantage of the validated gene regulatory topology. We propose a graph-based end-to-end deep learning model for GRN inference (GRNInfer) with the help of known regulatory relations through transductive learning. The robustness and superiority of the model are demonstrated by comparative experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于先验知识与图编码器的单细胞RNA-Seq基因调控推理
基于单细胞转录组推断基因调控网络对于系统地理解细胞特异性调控网络和发现肿瘤细胞中的药物靶点至关重要。现有方法主要进行共表达分析,并采用基于图像的模型处理非欧几里得scRNA-seq数据,可能无法合理处理dropout问题,也无法充分利用已验证的基因调控拓扑。我们提出了一种基于图的端到端深度学习模型,用于GRN推理(GRNInfer),该模型通过转导学习帮助已知的调节关系。通过对比实验验证了该模型的鲁棒性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for associating structural variants with cell-specific transcription factors and histone modifications in defect phenotypes Secure Password Using EEG-based BrainPrint System: Unlock Smartphone Password Using Brain-Computer Interface Technology On functional annotation with gene co-expression networks ST-ChIP: Accurate prediction of spatiotemporal ChIP-seq data with recurrent neural networks Discovering the Knowledge in Unstructured Early Drug Development Data Using NLP and Advanced Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1